Clinical transfer of AGuIX®-based radiation treatments for locally advanced cervical cancer: MR quantification and in vitro insights in the NANOCOL clinical trial framework

Pauline Maury, Michele Mondini, Cyrus Chargari, Arthur Darricau, Mona Shahin, Samy Ammari, Sophie Bockel, Catherine Genestie, Ting Di Wu, François Lux, Olivier Tillement, Sandrine Lacombe, Eric Deutsch, Charlotte Robert, Erika Porcel

    Research output: Contribution to journalArticlepeer-review

    5 Citations (Scopus)

    Abstract

    Clinical trials incorporating metallic nanoparticles (NPs) have recently begun. Radiotherapy planning does not take into account NPs concentrations observed in the patients' target volumes. In the framework of the NANOCOL clinical trial including patients treated for locally advanced cervical cancers, this study proposes a complete method to evaluate the radiation-induced biological effects of NPs. For this, calibration phantom was developed and MRI sequences with variable flip angles were acquired. This process allowed the quantification of NPs in the tumor of 4 patients, which was compared to the results of mass spectrometry obtained from 3 patient biopsies. The concentration of the NPs was reproduced in 3D cell models. Based on clonogenic assays, the radio-enhancement effects were quantified for radiotherapy and brachytherapy, and the impact in terms of local control was evaluated. T1 signal change in GTVs revealed NPs accumulation ∼12.4 μmol/L, in agreement with mass spectrometry. Radio-enhancement effects of about 15 % at 2 Gy were found for both modalities, with a positive impact on local tumor control. Even if further follow-up of patients in this and subsequent clinical trials will be necessary to assess the reliability of this proof of concept, this study opens the way to the integration of a dose modulation factor to better take into account the impact of NPs in radiotherapy treatment.

    Original languageEnglish
    Article number102676
    JournalNanomedicine : nanotechnology, biology, and medicine
    Volume50
    DOIs
    Publication statusPublished - 1 Jun 2023

    Keywords

    • 3D cell models
    • MRI
    • NANOCOL clinical trial
    • Nanoparticles
    • Radiations

    Cite this