Abstract
The Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) program is an NCI-funded initiative with an objective to develop tools to optimize low-dose CT (LDCT) lung cancer screening. Here, we describe the rationale and design for the Risk Biomarker and Nodule Malignancy projects within INTEGRAL. The overarching goal of these projects is to systematically investigate circulating protein markers to include on a panel for use (i) pre-LDCT, to identify people likely to benefit from screening, and (ii) post-LDCT, to differentiate benign versus malignant nodules. To identify informative proteins, the Risk Biomarker project measured 1161 proteins in a nested-case control study within 2 prospective cohorts (n = 252 lung cancer cases and 252 controls) and replicated associations for a subset of proteins in 4 cohorts (n = 479 cases and 479 controls). Eligible participants had a current or former history of smoking and cases were diagnosed up to 3 years following blood draw. The Nodule Malignancy project measured 1078 proteins among participants with a heavy smoking history within four LDCT screening studies (n = 425 cases diagnosed up to 5 years following blood draw, 430 benign-nodule controls, and 398 nodule-free controls). The INTEGRAL panel will enable absolute quantification of 21 proteins. We will evaluate its performance in the Risk Biomarker project using a case-cohort study including 14 cohorts (n = 1696 cases and 2926 subcohort representatives), and in the Nodule Malignancy project within five LDCT screening studies (n = 675 cases, 680 benign-nodule controls, and 648 nodule-free controls). Future progress to advance lung cancer early detection biomarkers will require carefully designed validation, translational, and comparative studies.
Original language | English |
---|---|
Pages (from-to) | 1-12 |
Number of pages | 12 |
Journal | Annals of Epidemiology |
Volume | 77 |
DOIs | |
Publication status | Published - 1 Jan 2023 |
Externally published | Yes |
Keywords
- Lung cancer screening
- biomarker discovery and validation
- biomarkers
- early detection
- nodule malignancy
- risk prediction
- study design