TY - JOUR
T1 - Exploring the global vaginal microbiome and its impact on human health
AU - Abou Chacra, Linda
AU - Fenollar, Florence
N1 - Publisher Copyright:
© 2021
PY - 2021/11/1
Y1 - 2021/11/1
N2 - Around the world, more than 175,000,000 women are diagnosed every year with gynaecological disease, in many cases contributing to high morbidity and mortality. For this reason, knowledge of the composition of the vaginal microbiome and its variations represents a real health challenge, as this is key to improving therapeutic management. This review traces the history of the poorly known vaginal microbiome and focuses on the latest findings concerning this ecosystem. Studies in the past decade have targeted complex bacterial communities within the vagina. However, due to the development of technology and the emergence of next generation sequencing (NGS), the exact definition of the vaginal microbiome has changed and can no longer be linked solely to the presence of bacteria. In order to reach a global view of the vaginal microbiome, it is essential to take into account all microorganisms that the vagina harbours, including fungi, viruses, archaea, and candidate phyla radiation. Although these communities represent only a minimal percentage of the vaginal microbiome, they may act as modifiers of its basic physiology and may play a key role in the maintenance of microbial communities, as well as metabolic and immune functions. Studies of the complex interactions between these different microorganisms have recently begun and are not yet fully understood. Results to date indicate that these microbial communities together constitute the first line of defence against infections. On the other hand, the slightest disturbance in this microbiome may lead to disease. For this reason, enhanced knowledge of these associations is critical to better identify predispositions to certain illnesses, which may open new therapeutic avenues. Currently however, only the tip of the iceberg is understood and current research on this ecosystem is revolutionising our knowledge and understanding of human health and disease.
AB - Around the world, more than 175,000,000 women are diagnosed every year with gynaecological disease, in many cases contributing to high morbidity and mortality. For this reason, knowledge of the composition of the vaginal microbiome and its variations represents a real health challenge, as this is key to improving therapeutic management. This review traces the history of the poorly known vaginal microbiome and focuses on the latest findings concerning this ecosystem. Studies in the past decade have targeted complex bacterial communities within the vagina. However, due to the development of technology and the emergence of next generation sequencing (NGS), the exact definition of the vaginal microbiome has changed and can no longer be linked solely to the presence of bacteria. In order to reach a global view of the vaginal microbiome, it is essential to take into account all microorganisms that the vagina harbours, including fungi, viruses, archaea, and candidate phyla radiation. Although these communities represent only a minimal percentage of the vaginal microbiome, they may act as modifiers of its basic physiology and may play a key role in the maintenance of microbial communities, as well as metabolic and immune functions. Studies of the complex interactions between these different microorganisms have recently begun and are not yet fully understood. Results to date indicate that these microbial communities together constitute the first line of defence against infections. On the other hand, the slightest disturbance in this microbiome may lead to disease. For this reason, enhanced knowledge of these associations is critical to better identify predispositions to certain illnesses, which may open new therapeutic avenues. Currently however, only the tip of the iceberg is understood and current research on this ecosystem is revolutionising our knowledge and understanding of human health and disease.
KW - Bacteria
KW - Candidate phyla radiation
KW - Fungus
KW - Methanogens
KW - Vaginal microbiome
KW - Virus
UR - http://www.scopus.com/inward/record.url?scp=85115740837&partnerID=8YFLogxK
U2 - 10.1016/j.micpath.2021.105172
DO - 10.1016/j.micpath.2021.105172
M3 - Article
C2 - 34500016
AN - SCOPUS:85115740837
SN - 0882-4010
VL - 160
JO - Microbial Pathogenesis
JF - Microbial Pathogenesis
M1 - 105172
ER -