Hippocampal neurogenesis response: What can we expect from two different models of hypertension?

Daniela Pedroso, Ana R. Nunes, Lucília N. Diogo, Carole Oudot, Emília C. Monteiro, Catherine Brenner, Helena L.A. Vieira

Research output: Contribution to journalArticlepeer-review

13 Citations (Scopus)

Abstract

Hypertension is associated with cerebrovascular disease, white matter lesion and cognitive deficit, both in experimental models and clinical observations. Furthermore, in non-clinical models it is shown that hippocampus is affected by hypertension and hypoxia. Herein, two distinct hypertension models were used to study neurogenic response in hippocampus. Dahl salt sensitive (DSS) rat model is a genetic based idiopathic model, while chronic intermittent hypoxia (CIH) mimics the hypertension observed in patients with obstructive sleep apnea (OSA). Both models are chronic and trigger hypertension. No macroscopic alterations based on histological analysis were found in hippocampus derived from DSS and CIH exposure rats. Nevertheless, in hippocampus derived from CIH-induced hypertensive rats, there was a decrease on neuronal population (MAP2 and NeuN positive cells) and an increase on astrocytic marker GFAP. Accordingly, a higher increase on Ki67 expressing cells was found in dentate gyrus (DG) region, suggesting an enhancement of cell proliferation, concomitantly with an increase of Nestin staining, which indicates the presence of immature neurons under differentiation. While, in hippocampus of DSS rats with or without high salt diet, there was no remarkable difference indicating potential neuronal loss, astrocytic activation or neurogenesis. Furthermore, in both models hypertension did not alter the levels of expression of the stress response enzyme heme oxygenase-1 in DG. These data indicate that intermittent hypoxia might be the key factor involved in neurogenesis modulation in hippocampus. Furthermore, two hypotheses can be explored: (i) activation of neurogenesis is a response against neuronal loss induced by hypertension and/or hypoxia or (ii) neurogenesis can be directly stimulated by hypoxia as a neuroprotective mechanism.

Original languageEnglish
Pages (from-to)199-206
Number of pages8
JournalBrain Research
Volume1646
DOIs
Publication statusPublished - 1 Sept 2016
Externally publishedYes

Keywords

  • Abbreviations CIH chronic intermittent hypoxia
  • DG dentate gyrus
  • DOCA deoxycorticosterone acetate
  • DSS Dahl salt-sensitive
  • IH Intermittent hypoxia
  • OSA obstructive sleep apnea
  • SGZ subgranular zone
  • SHR spontaneous hypertensive rats
  • SVZ subventricular zone

Cite this