TY - JOUR
T1 - Mice lacking bi-1 gene show accelerated liver regeneration
AU - Bailly-Maitre, Béatrice
AU - Bard-Chapeau, Emilie
AU - Luciano, Fréderic
AU - Droin, Nathalie
AU - Bruey, Jean Marie
AU - Faustin, Benjamin
AU - Kress, Christina
AU - Zapata, Juan M.
AU - Reed, John C.
PY - 2007/2/15
Y1 - 2007/2/15
N2 - The liver has enormous regenerative capacity such that, after partial hepatectomy, hepatocytes rapidly replicate to restore liver mass, thus providing a context for studying in vivo mechanisms of cell growth regulation. Bax inhibitor-1 (BI-1) is an evolutionarily conserved endoplasmic reticulum (ER) protein that suppresses cell death. Interestingly, the BI-1 protein has been shown to regulate Ca2+ handling by the ER similar to antiapoptotic Bcl-2 family proteins. Effects on cell cycle entry by Bcl-2 family proteins have been described, prompting us to explore whether bi-1-deficient mice display alterations in the in vivo regulation of cell cycle entry using a model of liver regeneration. Accordingly, we compared bi-1+/+ and bi-1 -/- mice subjected to partial hepatectomy with respect to the kinetics of liver regeneration and molecular events associated with hepatocyte proliferation. We found that bi-1 deficiency accelerates liver regeneration after partial hepatectomy. Regenerating hepatocytes in bi-1-/- mice enter cell cycle faster, as documented by more rapid incorporation of deoxynucleotides, associated with earlier increases in cyclin D1, cyclin D3, cyclin-dependent kinase (Cdk) 2, and Cdk4 protein levels, more rapid hyperphosphorylation of retinoblastoma protein, and faster degradation of p27Kip1. Dephosphorylation and nuclear translocation of nuclear factor of activated T cells 1 (NFAT1), a substrate of the Ca2+- sensitive phosphatase calcineurin, were also accelerated following partial hepatectomy in BI-1-deficient hepatocytes. These findings therefore reveal additional similarities between BI-1 and Bcl-2 family proteins, showing a role for BI-1 in regulating cell proliferation in vivo, in addition to its previously described actions as a regulator of cell survival.
AB - The liver has enormous regenerative capacity such that, after partial hepatectomy, hepatocytes rapidly replicate to restore liver mass, thus providing a context for studying in vivo mechanisms of cell growth regulation. Bax inhibitor-1 (BI-1) is an evolutionarily conserved endoplasmic reticulum (ER) protein that suppresses cell death. Interestingly, the BI-1 protein has been shown to regulate Ca2+ handling by the ER similar to antiapoptotic Bcl-2 family proteins. Effects on cell cycle entry by Bcl-2 family proteins have been described, prompting us to explore whether bi-1-deficient mice display alterations in the in vivo regulation of cell cycle entry using a model of liver regeneration. Accordingly, we compared bi-1+/+ and bi-1 -/- mice subjected to partial hepatectomy with respect to the kinetics of liver regeneration and molecular events associated with hepatocyte proliferation. We found that bi-1 deficiency accelerates liver regeneration after partial hepatectomy. Regenerating hepatocytes in bi-1-/- mice enter cell cycle faster, as documented by more rapid incorporation of deoxynucleotides, associated with earlier increases in cyclin D1, cyclin D3, cyclin-dependent kinase (Cdk) 2, and Cdk4 protein levels, more rapid hyperphosphorylation of retinoblastoma protein, and faster degradation of p27Kip1. Dephosphorylation and nuclear translocation of nuclear factor of activated T cells 1 (NFAT1), a substrate of the Ca2+- sensitive phosphatase calcineurin, were also accelerated following partial hepatectomy in BI-1-deficient hepatocytes. These findings therefore reveal additional similarities between BI-1 and Bcl-2 family proteins, showing a role for BI-1 in regulating cell proliferation in vivo, in addition to its previously described actions as a regulator of cell survival.
UR - http://www.scopus.com/inward/record.url?scp=33847700820&partnerID=8YFLogxK
U2 - 10.1158/0008-5472.CAN-06-0850
DO - 10.1158/0008-5472.CAN-06-0850
M3 - Article
C2 - 17308082
AN - SCOPUS:33847700820
SN - 0008-5472
VL - 67
SP - 1442
EP - 1450
JO - Cancer Research
JF - Cancer Research
IS - 4
ER -