Mitochondrial control of nuclear apoptosis

Naoufal Zamzami, Santos A. Susin, Philippe Marchetti, Tamara Hirsch, Isabel Gómez-Monterrey, Maria Castedo, Guido Kroemer

Research output: Contribution to journalArticlepeer-review

1282 Citations (Scopus)

Abstract

Anucleate cells can be induced to undergo programmed cell death (PCD), indicating the existence of a cytoplasmic PCD pathway that functions independently from the nucleus. Cytoplasmic structures including mitochondria have been shown to participate in the control of apoptotic nuclear disintegration. Before cells exhibit common signs of nuclear apoptosis (chromatin condensation and endonuclease-mediated DNA fragmentation), they undergo a reduction of the mitochondrial transmembrane potential (ΔΨ(m)) that may be due to the opening of mitochondrial permeability transition (PT) pores. Here, we present direct evidence indicating that mitochondrial PT constitutes a critical early event of the apoptotic process. In a cell-free system combining purified mitochondria and nuclei, mitochondria undergoing PT suffice to induce chromatin condensation and DNA fragmentation. Induction of PT by pharmacological agents augments the apoptosis-inducing potential of mitochondria. In contrast, prevention of PT by pharmacological agents impedes nuclear apoptosis, both in vitro and in vivo. Mitochondria from hepatocytes or lymphoid cells undergoing apoptosis, but not those from normal cells, induce the disintegration of isolated Hela nuclei. A specific ligand of the mitochondrial adenine nucleotide translocator (ANT), bongkrekic acid, inhibits PT and reduces apoptosis induction by mitochondria in a cell-free system. Moreover, it inhibits the induction of apoptosis in intact cells. Several pieces of evidence suggest that the proto-oncogene product Bcl-2 inhibits apoptosis by preventing mitochondrial PT. First, to inhibit nuclear apoptosis, Bcl-2 must be localized in mitochondrial but not in nuclear membranes. Second, transfection-enforced hyperexpression of Bcl-2 directly abolishes the induction of mitochondrial PT in response to a protonophore, a pro-oxidant, as well as to the ANT ligand atractyloside, correlating with its apoptosis-inhibitory effect. In conclusion, mitochondrial PT appears to be a critical step of the apoptotic cascade.

Original languageEnglish
Pages (from-to)1533-1544
Number of pages12
JournalJournal of Experimental Medicine
Volume183
Issue number4
DOIs
Publication statusPublished - 1 Apr 1996
Externally publishedYes

Cite this