TY - JOUR
T1 - Predicting preload responsiveness using simultaneous recordings of inferior and superior vena cavae diameters
AU - Charbonneau, Hélène
AU - Riu, Béatrice
AU - Faron, Matthieu
AU - Mari, Arnaud
AU - Kurrek, Matt M.
AU - Ruiz, Jean
AU - Geeraerts, Thomas
AU - Fourcade, Olivier
AU - Genestal, Michèle
AU - Silva, Stein
N1 - Publisher Copyright:
© 2014 Charbonneau et al., licensee BioMed Central Ltd.
PY - 2014/9/5
Y1 - 2014/9/5
N2 - Introduction: Echocardiographic indices based on respiratory variations of superior and inferior vena cavae diameters (ΔSVC and ΔIVC, respectively) have been proposed as predictors of fluid responsiveness in mechanically ventilated patients, but they have never been compared simultaneously in the same patient sample. The aim of this study was to compare the predictive value of these echocardiographic indices when concomitantly recorded in mechanically ventilated septic patients. Methods: Septic shock patients requiring hemodynamic monitoring were prospectively enrolled over a 1-year period in a mixed medical surgical ICU of a university teaching hospital (Toulouse, France). All patients were mechanically ventilated. Predictive indices were obtained by transesophageal and transthoracic echocardiography and were calculated as follows: (Dmax - Dmin)/Dmax for ΔSVC and (Dmax - Dmin)/Dmin for ΔIVC, where Dmax and Dmin are the maximal and minimal diameters of SVC and IVC. Measurements were performed at baseline and after a 7-ml/kg volume expansion using a plasma expander. Patients were separated into responders (increase in cardiac index ≥15%) and nonresponders (increase in cardiac index <15%). Results: Among 44 included patients, 26 (59%) patients were responders (R). ΔSVC was significantly more accurate than ΔIVC in predicting fluid responsiveness. The areas under the receiver operating characteristic curves for ΔSVC and ΔIVC regarding assessment of fluid responsiveness were significantly different (0.74 (95% confidence interval (CI): 0.59 to 0.88) and 0.43 (95% CI: 0.25 to 0.61), respectively (P = 0.012)). No significant correlation between ΔSVC and ΔIVC was found (r = 0.005, P = 0.98). The best threshold values for discriminating R from NR was 29% for ΔSVC, with 54% sensitivity and 89% specificity, and 21% for ΔIVC, with 38% sensitivity and 61% specificity. Conclusions: ΔSVC was better than ΔIVC in predicting fluid responsiveness in our cohort. It is worth noting that the sensitivity and specificity values of ΔSVC and ΔIVC for predicting fluid responsiveness were lower than those reported in the literature, highlighting the limits of using these indices in a heterogeneous sample of medical and surgical septic patients.
AB - Introduction: Echocardiographic indices based on respiratory variations of superior and inferior vena cavae diameters (ΔSVC and ΔIVC, respectively) have been proposed as predictors of fluid responsiveness in mechanically ventilated patients, but they have never been compared simultaneously in the same patient sample. The aim of this study was to compare the predictive value of these echocardiographic indices when concomitantly recorded in mechanically ventilated septic patients. Methods: Septic shock patients requiring hemodynamic monitoring were prospectively enrolled over a 1-year period in a mixed medical surgical ICU of a university teaching hospital (Toulouse, France). All patients were mechanically ventilated. Predictive indices were obtained by transesophageal and transthoracic echocardiography and were calculated as follows: (Dmax - Dmin)/Dmax for ΔSVC and (Dmax - Dmin)/Dmin for ΔIVC, where Dmax and Dmin are the maximal and minimal diameters of SVC and IVC. Measurements were performed at baseline and after a 7-ml/kg volume expansion using a plasma expander. Patients were separated into responders (increase in cardiac index ≥15%) and nonresponders (increase in cardiac index <15%). Results: Among 44 included patients, 26 (59%) patients were responders (R). ΔSVC was significantly more accurate than ΔIVC in predicting fluid responsiveness. The areas under the receiver operating characteristic curves for ΔSVC and ΔIVC regarding assessment of fluid responsiveness were significantly different (0.74 (95% confidence interval (CI): 0.59 to 0.88) and 0.43 (95% CI: 0.25 to 0.61), respectively (P = 0.012)). No significant correlation between ΔSVC and ΔIVC was found (r = 0.005, P = 0.98). The best threshold values for discriminating R from NR was 29% for ΔSVC, with 54% sensitivity and 89% specificity, and 21% for ΔIVC, with 38% sensitivity and 61% specificity. Conclusions: ΔSVC was better than ΔIVC in predicting fluid responsiveness in our cohort. It is worth noting that the sensitivity and specificity values of ΔSVC and ΔIVC for predicting fluid responsiveness were lower than those reported in the literature, highlighting the limits of using these indices in a heterogeneous sample of medical and surgical septic patients.
UR - http://www.scopus.com/inward/record.url?scp=84908124356&partnerID=8YFLogxK
U2 - 10.1186/s13054-014-0473-5
DO - 10.1186/s13054-014-0473-5
M3 - Article
C2 - 25189403
AN - SCOPUS:84908124356
SN - 1364-8535
VL - 18
JO - Critical Care
JF - Critical Care
IS - 5
M1 - 473
ER -