TY - JOUR
T1 - Aberrant dna methylation of imprinted loci in hepatocellular carcinoma and after in vitro exposure to common risk factors
AU - Lambert, Marie Pierre
AU - Ancey, Pierre Benoit
AU - Esposti, Davide Degli
AU - Cros, Marie Pierre
AU - Sklias, Athena
AU - Scoazec, Jean Yves
AU - Durantel, David
AU - Hernandez-Vargas, Hector
AU - Herceg, Zdenko
N1 - Publisher Copyright:
© 2015 Lambert et al.
PY - 2015/2/27
Y1 - 2015/2/27
N2 - Background: Hepatocellular carcinoma (HCC) is among the most frequent human malignancies and a major cause of cancer-related death worldwide. It is characterized by late detection and fast progression, and it is believed that epigenetic disruption may be one of the molecular mechanisms leading to hepatocarcinogenesis. Previous studies from our group revealed that HCC tumors exhibit specific DNA methylation signatures associated with major risk factors and tumor progression. Imprinted genes are mono-allelically expressed in a parent-of-origin-dependent manner and have been suggested to be more susceptible to deregulation in cancer. To test this notion, we performed a targeted analysis of DNA methylation in known imprinted genes, using HCC samples and in vitro models of carcinogenic exposure. Results: Analysis of HCC DNA methylation in two independent datasets showed that differentially methylated loci are significantly enriched in imprinted genes. Most of the promoters of imprinted genes were found hypomethylated in HCC tumors compared to surrounding tissues, contrasting with the frequent promoter hypermethylation observed in tumors. We next investigated the status of methylation of the imprinting control region (ICR) of different imprinted clusters and found that the 15q11-13 ICR was significantly hypomethylated in tumors relative to their surrounding tissues. In addition, expression of imprinted genes within this cluster was frequently deregulated in a gene-specific manner, suggesting distinct mechanisms of regulation in this region. Finally, primary human hepatocytes and hepatocyte-like HepaRG cells displayed higher methylation variability in certain imprinted loci after natural hepatitis B virus (HBV) infection and after lipid accumulation, respectively. Conclusion: The methylation status of a large panel of imprinted genes was found deregulated in HCC, suggesting a major role of this mechanism during hepatocarcinogenesis. In vitro models support the hypothesis of imprinted gene methylation as a potential marker of environmental exposures.
AB - Background: Hepatocellular carcinoma (HCC) is among the most frequent human malignancies and a major cause of cancer-related death worldwide. It is characterized by late detection and fast progression, and it is believed that epigenetic disruption may be one of the molecular mechanisms leading to hepatocarcinogenesis. Previous studies from our group revealed that HCC tumors exhibit specific DNA methylation signatures associated with major risk factors and tumor progression. Imprinted genes are mono-allelically expressed in a parent-of-origin-dependent manner and have been suggested to be more susceptible to deregulation in cancer. To test this notion, we performed a targeted analysis of DNA methylation in known imprinted genes, using HCC samples and in vitro models of carcinogenic exposure. Results: Analysis of HCC DNA methylation in two independent datasets showed that differentially methylated loci are significantly enriched in imprinted genes. Most of the promoters of imprinted genes were found hypomethylated in HCC tumors compared to surrounding tissues, contrasting with the frequent promoter hypermethylation observed in tumors. We next investigated the status of methylation of the imprinting control region (ICR) of different imprinted clusters and found that the 15q11-13 ICR was significantly hypomethylated in tumors relative to their surrounding tissues. In addition, expression of imprinted genes within this cluster was frequently deregulated in a gene-specific manner, suggesting distinct mechanisms of regulation in this region. Finally, primary human hepatocytes and hepatocyte-like HepaRG cells displayed higher methylation variability in certain imprinted loci after natural hepatitis B virus (HBV) infection and after lipid accumulation, respectively. Conclusion: The methylation status of a large panel of imprinted genes was found deregulated in HCC, suggesting a major role of this mechanism during hepatocarcinogenesis. In vitro models support the hypothesis of imprinted gene methylation as a potential marker of environmental exposures.
KW - Imprinting
KW - Liver cancer
KW - Methylome
KW - Promoter methylation
UR - http://www.scopus.com/inward/record.url?scp=84927138889&partnerID=8YFLogxK
U2 - 10.1186/s13148-015-0053-9
DO - 10.1186/s13148-015-0053-9
M3 - Article
AN - SCOPUS:84927138889
SN - 1868-7075
VL - 7
JO - Clinical Epigenetics
JF - Clinical Epigenetics
IS - 1
ER -