TY - JOUR
T1 - Activation of mitochondria and release of mitochondrial apoptogenic factors by betulinic acid
AU - Fulda, Simone
AU - Scaffidi, Garsten
AU - Susin, Santos A.
AU - Krammer, Peter H.
AU - Kroemer, Guido
AU - Peter, Marcus E.
AU - Debatin, Klaus Michael
PY - 1998/12/18
Y1 - 1998/12/18
N2 - Different classes of anticancer drugs may trigger apoptosis by acting on different subcellular targets and by activating distinct signaling pathways. Here, we report that betulinic acid (BetA) is a prototype cytotoxic agent that triggers apoptosis by a direct effect on mitochondria. In isolated mitochondria, BetA directly induces loss of transmembrane potential independent of a benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone- inhibitable caspase. This is inhibited by bongkrekic acid, an agent that stabilizes the permeability transition pore complex. Mitochondria undergoing BetA-induced permeability transition mediate cleavage of caspase-8 (FLICE/MACH/Mch5) and caspase-3 (CPP32/Yama) in a cell-free system. Soluble factors such as cytochrome c or apoptosis-inducing factor released from BetA- treated mitochondria are sufficient for cleavage of caspases and nuclear fragmentation. Addition of cytochrome c to cytosolic extracts results in cleavage of caspase-3, but not of caspase-8. However, supernatants of mitochondria, which have undergone permeability transition, and partially purified apoptosis-inducing factor activate both caspase-8 and caspase-3 in cytosolic extracts and suffice to activate recombinant caspase-8. These findings show that induction of mitochondrial permeability transition alone is sufficient to trigger the full apoptosis program and that some cytotoxic drugs such as Beta may induce apoptosis via a direct effect on mitochondria.
AB - Different classes of anticancer drugs may trigger apoptosis by acting on different subcellular targets and by activating distinct signaling pathways. Here, we report that betulinic acid (BetA) is a prototype cytotoxic agent that triggers apoptosis by a direct effect on mitochondria. In isolated mitochondria, BetA directly induces loss of transmembrane potential independent of a benzyloxycarbonyl-Val-Ala-Asp-fluoromethyl ketone- inhibitable caspase. This is inhibited by bongkrekic acid, an agent that stabilizes the permeability transition pore complex. Mitochondria undergoing BetA-induced permeability transition mediate cleavage of caspase-8 (FLICE/MACH/Mch5) and caspase-3 (CPP32/Yama) in a cell-free system. Soluble factors such as cytochrome c or apoptosis-inducing factor released from BetA- treated mitochondria are sufficient for cleavage of caspases and nuclear fragmentation. Addition of cytochrome c to cytosolic extracts results in cleavage of caspase-3, but not of caspase-8. However, supernatants of mitochondria, which have undergone permeability transition, and partially purified apoptosis-inducing factor activate both caspase-8 and caspase-3 in cytosolic extracts and suffice to activate recombinant caspase-8. These findings show that induction of mitochondrial permeability transition alone is sufficient to trigger the full apoptosis program and that some cytotoxic drugs such as Beta may induce apoptosis via a direct effect on mitochondria.
UR - http://www.scopus.com/inward/record.url?scp=0032545386&partnerID=8YFLogxK
U2 - 10.1074/jbc.273.51.33942
DO - 10.1074/jbc.273.51.33942
M3 - Article
C2 - 9852046
AN - SCOPUS:0032545386
SN - 0021-9258
VL - 273
SP - 33942
EP - 33948
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 51
ER -