TY - JOUR
T1 - An Explainable MRI-Radiomic Quantum Neural Network to Differentiate Between Large Brain Metastases and High-Grade Glioma Using Quantum Annealing for Feature Selection
AU - Felefly, Tony
AU - Roukoz, Camille
AU - Fares, Georges
AU - Achkar, Samir
AU - Yazbeck, Sandrine
AU - Meyer, Philippe
AU - Kordahi, Manal
AU - Azoury, Fares
AU - Nasr, Dolly Nehme
AU - Nasr, Elie
AU - Noël, Georges
AU - Francis, Ziad
N1 - Publisher Copyright:
© 2023, The Author(s).
PY - 2023/12/1
Y1 - 2023/12/1
N2 - Solitary large brain metastases (LBM) and high-grade gliomas (HGG) are sometimes hard to differentiate on MRI. The management differs significantly between these two entities, and non-invasive methods that help differentiate between them are eagerly needed to avoid potentially morbid biopsies and surgical procedures. We explore herein the performance and interpretability of an MRI-radiomics variational quantum neural network (QNN) using a quantum-annealing mutual-information (MI) feature selection approach. We retrospectively included 423 patients with HGG and LBM (> 2 cm) who had a contrast-enhanced T1-weighted (CE-T1) MRI between 2012 and 2019. After exclusion, 72 HGG and 129 LBM were kept. Tumors were manually segmented, and a 5-mm peri-tumoral ring was created. MRI images were pre-processed, and 1813 radiomic features were extracted. A set of best features based on MI was selected. MI and conditional-MI were embedded into a quadratic unconstrained binary optimization (QUBO) formulation that was mapped to an Ising-model and submitted to D’Wave’s quantum annealer to solve for the best combination of 10 features. The 10 selected features were embedded into a 2-qubits QNN using PennyLane library. The model was evaluated for balanced-accuracy (bACC) and area under the receiver operating characteristic curve (ROC-AUC) on the test set. The model performance was benchmarked against two classical models: dense neural networks (DNN) and extreme gradient boosting (XGB). Shapley values were calculated to interpret sample-wise predictions on the test set. The best 10-feature combination included 6 tumor and 4 ring features. For QNN, DNN, and XGB, respectively, training ROC-AUC was 0.86, 0.95, and 0.94; test ROC-AUC was 0.76, 0.75, and 0.79; and test bACC was 0.74, 0.73, and 0.72. The two most influential features were tumor Laplacian-of-Gaussian-GLRLM-Entropy and sphericity. We developed an accurate interpretable QNN model with quantum-informed feature selection to differentiate between LBM and HGG on CE-T1 brain MRI. The model performance is comparable to state-of-the-art classical models.
AB - Solitary large brain metastases (LBM) and high-grade gliomas (HGG) are sometimes hard to differentiate on MRI. The management differs significantly between these two entities, and non-invasive methods that help differentiate between them are eagerly needed to avoid potentially morbid biopsies and surgical procedures. We explore herein the performance and interpretability of an MRI-radiomics variational quantum neural network (QNN) using a quantum-annealing mutual-information (MI) feature selection approach. We retrospectively included 423 patients with HGG and LBM (> 2 cm) who had a contrast-enhanced T1-weighted (CE-T1) MRI between 2012 and 2019. After exclusion, 72 HGG and 129 LBM were kept. Tumors were manually segmented, and a 5-mm peri-tumoral ring was created. MRI images were pre-processed, and 1813 radiomic features were extracted. A set of best features based on MI was selected. MI and conditional-MI were embedded into a quadratic unconstrained binary optimization (QUBO) formulation that was mapped to an Ising-model and submitted to D’Wave’s quantum annealer to solve for the best combination of 10 features. The 10 selected features were embedded into a 2-qubits QNN using PennyLane library. The model was evaluated for balanced-accuracy (bACC) and area under the receiver operating characteristic curve (ROC-AUC) on the test set. The model performance was benchmarked against two classical models: dense neural networks (DNN) and extreme gradient boosting (XGB). Shapley values were calculated to interpret sample-wise predictions on the test set. The best 10-feature combination included 6 tumor and 4 ring features. For QNN, DNN, and XGB, respectively, training ROC-AUC was 0.86, 0.95, and 0.94; test ROC-AUC was 0.76, 0.75, and 0.79; and test bACC was 0.74, 0.73, and 0.72. The two most influential features were tumor Laplacian-of-Gaussian-GLRLM-Entropy and sphericity. We developed an accurate interpretable QNN model with quantum-informed feature selection to differentiate between LBM and HGG on CE-T1 brain MRI. The model performance is comparable to state-of-the-art classical models.
KW - Brain metastasis
KW - Glioma
KW - Machine Learning
KW - Quantum annealing
KW - Variational classifier
UR - http://www.scopus.com/inward/record.url?scp=85174367724&partnerID=8YFLogxK
U2 - 10.1007/s10278-023-00886-x
DO - 10.1007/s10278-023-00886-x
M3 - Article
C2 - 37507581
AN - SCOPUS:85174367724
SN - 0897-1889
VL - 36
SP - 2335
EP - 2346
JO - Journal of Digital Imaging
JF - Journal of Digital Imaging
IS - 6
ER -