An Explainable MRI-Radiomic Quantum Neural Network to Differentiate Between Large Brain Metastases and High-Grade Glioma Using Quantum Annealing for Feature Selection

Tony Felefly, Camille Roukoz, Georges Fares, Samir Achkar, Sandrine Yazbeck, Philippe Meyer, Manal Kordahi, Fares Azoury, Dolly Nehme Nasr, Elie Nasr, Georges Noël, Ziad Francis

    Résultats de recherche: Contribution à un journalArticleRevue par des pairs

    2 Citations (Scopus)

    Résumé

    Solitary large brain metastases (LBM) and high-grade gliomas (HGG) are sometimes hard to differentiate on MRI. The management differs significantly between these two entities, and non-invasive methods that help differentiate between them are eagerly needed to avoid potentially morbid biopsies and surgical procedures. We explore herein the performance and interpretability of an MRI-radiomics variational quantum neural network (QNN) using a quantum-annealing mutual-information (MI) feature selection approach. We retrospectively included 423 patients with HGG and LBM (> 2 cm) who had a contrast-enhanced T1-weighted (CE-T1) MRI between 2012 and 2019. After exclusion, 72 HGG and 129 LBM were kept. Tumors were manually segmented, and a 5-mm peri-tumoral ring was created. MRI images were pre-processed, and 1813 radiomic features were extracted. A set of best features based on MI was selected. MI and conditional-MI were embedded into a quadratic unconstrained binary optimization (QUBO) formulation that was mapped to an Ising-model and submitted to D’Wave’s quantum annealer to solve for the best combination of 10 features. The 10 selected features were embedded into a 2-qubits QNN using PennyLane library. The model was evaluated for balanced-accuracy (bACC) and area under the receiver operating characteristic curve (ROC-AUC) on the test set. The model performance was benchmarked against two classical models: dense neural networks (DNN) and extreme gradient boosting (XGB). Shapley values were calculated to interpret sample-wise predictions on the test set. The best 10-feature combination included 6 tumor and 4 ring features. For QNN, DNN, and XGB, respectively, training ROC-AUC was 0.86, 0.95, and 0.94; test ROC-AUC was 0.76, 0.75, and 0.79; and test bACC was 0.74, 0.73, and 0.72. The two most influential features were tumor Laplacian-of-Gaussian-GLRLM-Entropy and sphericity. We developed an accurate interpretable QNN model with quantum-informed feature selection to differentiate between LBM and HGG on CE-T1 brain MRI. The model performance is comparable to state-of-the-art classical models.

    langue originaleAnglais
    Pages (de - à)2335-2346
    Nombre de pages12
    journalJournal of Digital Imaging
    Volume36
    Numéro de publication6
    Les DOIs
    étatPublié - 1 déc. 2023

    Contient cette citation