Artificial intelligence, radiomics and pathomics to predict response and survival of patients treated with radiations

Titre traduit de la contribution: Intelligence artificielle en radiothérapie: radiomique, pathomique, et prédiction de la survie et de la réponse aux traitements

R. Sun, M. Lerousseau, T. Henry, A. Carré, A. Leroy, T. Estienne, S. Niyoteka, S. Bockel, A. Rouyar, Andres Alvarez Andres, N. Benzazon, E. Battistella, M. Classe, C. Robert, J. Y. Scoazec, Deutsch

    Résultats de recherche: Contribution à un journalArticle 'review'Revue par des pairs

    3 Citations (Scopus)

    Résumé

    Artificial intelligence approaches in medicine are more and more used and are extremely promising due to the growing number of data produced and the variety of data they allow to exploit. Thus, the computational analysis of medical images in particular, radiological (radiomics), or anatomopathological (pathomics), has shown many very interesting results for the prediction of the prognosis and the response of cancer patients. Radiotherapy is a discipline that particularly benefits from these new approaches based on computer science and imaging. This review will present the main principles of an artificial intelligence approach and in particular machine learning, the principles of a radiomic and pathomic approach and the potential of their use for the prediction of the prognosis of patients treated with radiotherapy.

    Titre traduit de la contributionIntelligence artificielle en radiothérapie: radiomique, pathomique, et prédiction de la survie et de la réponse aux traitements
    langue originaleAnglais
    Pages (de - à)630-637
    Nombre de pages8
    journalCancer/Radiotherapie
    Volume25
    Numéro de publication6-7
    Les DOIs
    étatPublié - 1 oct. 2021

    Contient cette citation