TY - GEN
T1 - Automatic Brain Tumor Segmentation with a Bridge-Unet Deeply Supervised Enhanced with Downsampling Pooling Combination, Atrous Spatial Pyramid Pooling, Squeeze-and-Excitation and EvoNorm
AU - Carré, Alexandre
AU - Deutsch, Eric
AU - Robert, Charlotte
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022/1/1
Y1 - 2022/1/1
N2 - Segmentation of brain tumors is a critical task for patient disease management. Since this task is time-consuming and subject to inter-expert delineation variation, automatic methods are of significant interest. The Multimodal Brain Tumor Segmentation Challenge (BraTS) has been in place for about a decade and provides a common platform to compare different automatic segmentation algorithms based on multiparametric magnetic resonance imaging (mpMRI) of gliomas. This year the challenge has taken a big step forward by multiplying the total data by approximately 3. We address the image segmentation challenge by developing a network based on a Bridge-Unet and improved with a concatenation of max and average pooling for downsampling, Squeeze-and-Excitation (SE) block, Atrous Spatial Pyramid Pooling (ASSP), and EvoNorm-S0. Our model was trained using the 1251 training cases from the BraTS 2021 challenge and achieved an average Dice similarity coefficient (DSC) of 0.92457, 0.87811 and 0.84094, as well as a 95% Hausdorff distance (HD) of 4.19442, 7.55256 and 14.13390 mm for the whole tumor, tumor core, and enhanced tumor, respectively on the online validation platform composed of 219 cases. Similarly, our solution achieved a DSC of 0.92548, 0.87628 and 0.87122, as well as HD95 of 4.30711, 17.84987 and 12.23361 mm on the test dataset composed of 530 cases. Overall, our approach yielded well balanced performance for each tumor subregion.
AB - Segmentation of brain tumors is a critical task for patient disease management. Since this task is time-consuming and subject to inter-expert delineation variation, automatic methods are of significant interest. The Multimodal Brain Tumor Segmentation Challenge (BraTS) has been in place for about a decade and provides a common platform to compare different automatic segmentation algorithms based on multiparametric magnetic resonance imaging (mpMRI) of gliomas. This year the challenge has taken a big step forward by multiplying the total data by approximately 3. We address the image segmentation challenge by developing a network based on a Bridge-Unet and improved with a concatenation of max and average pooling for downsampling, Squeeze-and-Excitation (SE) block, Atrous Spatial Pyramid Pooling (ASSP), and EvoNorm-S0. Our model was trained using the 1251 training cases from the BraTS 2021 challenge and achieved an average Dice similarity coefficient (DSC) of 0.92457, 0.87811 and 0.84094, as well as a 95% Hausdorff distance (HD) of 4.19442, 7.55256 and 14.13390 mm for the whole tumor, tumor core, and enhanced tumor, respectively on the online validation platform composed of 219 cases. Similarly, our solution achieved a DSC of 0.92548, 0.87628 and 0.87122, as well as HD95 of 4.30711, 17.84987 and 12.23361 mm on the test dataset composed of 530 cases. Overall, our approach yielded well balanced performance for each tumor subregion.
KW - Brain tumor
KW - Deep-learning
KW - Segmentation
UR - http://www.scopus.com/inward/record.url?scp=85135153771&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-09002-8_23
DO - 10.1007/978-3-031-09002-8_23
M3 - Conference contribution
AN - SCOPUS:85135153771
SN - 9783031090011
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 253
EP - 266
BT - Brainlesion
A2 - Crimi, Alessandro
A2 - Bakas, Spyridon
PB - Springer Science and Business Media Deutschland GmbH
T2 - 7th International Brain Lesion Workshop, BrainLes 2021, held in conjunction with the Medical Image Computing and Computer Assisted Intervention, MICCAI 2021
Y2 - 27 September 2021 through 27 September 2021
ER -