TY - JOUR
T1 - Autophagy inhibition radiosensitizes in vitro, yet reduces radioresponses in vivo due to deficient immunogenic signalling
AU - Ko, A.
AU - Kanehisa, A.
AU - Martins, I.
AU - Senovilla, L.
AU - Chargari, C.
AU - Dugue, D.
AU - Mariño, G.
AU - Kepp, O.
AU - Michaud, M.
AU - Perfettini, J. L.
AU - Kroemer, G.
AU - Deutsch, E.
N1 - Funding Information:
Acknowledgements. This work was supported by a grant from Association de recherche contre le cancer (ARC) and Électricité de France (EDF) to ED. We thank Fondation Gustave Roussy. We also thank Didier Métivier (INSERM U848, Villejuif, France) for technical help and Nazanine Modjtahedi (INSERM U848, Villejuif, France) for helpful advice. This work is supported by grants to GK from the Ligue Nationale contre le Cancer (Equipe labellisée), Agence Nationale pour la Recherche (ANR), Fondation pour la Recherche Médicale (FRM), Institut National du Cancer (INCa), Cancéropôle Ile-de-France, Fondation Bettencourt-Schueller, the LabEx Onco-Immunology and the Paris Alliance of Cancer Research Institutes.
PY - 2014/1/1
Y1 - 2014/1/1
N2 - Clinical oncology heavily relies on the use of radiotherapy, which often leads to merely transient responses that are followed by local or distant relapse. The molecular mechanisms explaining radioresistance are largely elusive. Here, we identified a dual role of autophagy in the response of cancer cells to ionizing radiation. On one hand, we observed that the depletion of essential autophagy-relevant gene products, such as ATG5 and Beclin 1, increased the sensitivity of human or mouse cancer cell lines to irradiation, both in vitro (where autophagy inhibition increased radiation-induced cell death and decreased clonogenic survival) and in vivo, after transplantation of the cell lines into immunodeficient mice (where autophagy inhibition potentiated the tumour growth-inhibitory effect of radiotherapy). On the other hand, when tumour proficient or deficient for autophagy were implanted in immunocompetent mice, it turned out that defective autophagy reduced the efficacy of radiotherapy. Indeed, radiotherapy elicited an anti-cancer immune response that was dependent on autophagy-induced ATP release from stressed or dying tumour cells and was characterized by dense lymphocyte infiltration of the tumour bed. Intratumoural injection of an ecto-ATPase inhibitor restored the immune infiltration of autophagy-deficient tumours post radiotherapy and improved the growth-inhibitory effect of ionizing irradiation. Altogether, our results reveal that beyond its cytoprotective function, autophagy confers immunogenic properties to tumours, hence amplifying the efficacy of radiotherapy in an immunocompetent context. This has far-reaching implications for the development of pharmacological radiosensitizers.
AB - Clinical oncology heavily relies on the use of radiotherapy, which often leads to merely transient responses that are followed by local or distant relapse. The molecular mechanisms explaining radioresistance are largely elusive. Here, we identified a dual role of autophagy in the response of cancer cells to ionizing radiation. On one hand, we observed that the depletion of essential autophagy-relevant gene products, such as ATG5 and Beclin 1, increased the sensitivity of human or mouse cancer cell lines to irradiation, both in vitro (where autophagy inhibition increased radiation-induced cell death and decreased clonogenic survival) and in vivo, after transplantation of the cell lines into immunodeficient mice (where autophagy inhibition potentiated the tumour growth-inhibitory effect of radiotherapy). On the other hand, when tumour proficient or deficient for autophagy were implanted in immunocompetent mice, it turned out that defective autophagy reduced the efficacy of radiotherapy. Indeed, radiotherapy elicited an anti-cancer immune response that was dependent on autophagy-induced ATP release from stressed or dying tumour cells and was characterized by dense lymphocyte infiltration of the tumour bed. Intratumoural injection of an ecto-ATPase inhibitor restored the immune infiltration of autophagy-deficient tumours post radiotherapy and improved the growth-inhibitory effect of ionizing irradiation. Altogether, our results reveal that beyond its cytoprotective function, autophagy confers immunogenic properties to tumours, hence amplifying the efficacy of radiotherapy in an immunocompetent context. This has far-reaching implications for the development of pharmacological radiosensitizers.
KW - autophagy
KW - immunogenic cell death
KW - irradiation
KW - non-small-cell lung carcinoma
KW - radiotherapy
UR - http://www.scopus.com/inward/record.url?scp=84890032905&partnerID=8YFLogxK
U2 - 10.1038/cdd.2013.124
DO - 10.1038/cdd.2013.124
M3 - Article
C2 - 24037090
AN - SCOPUS:84890032905
SN - 1350-9047
VL - 21
SP - 92
EP - 99
JO - Cell Death and Differentiation
JF - Cell Death and Differentiation
IS - 1
ER -