TY - JOUR
T1 - Candidate genes on chromosome 9q33-34 involved in the progression of childhood ependymomas
AU - Vassal, Gilles
AU - Puget, Stéphanie
AU - Grill, Jacques
AU - Valent, Alexander
AU - Bieche, Ivan
AU - Dantas-Barbosa, Carmela
AU - Kaufmann, Audrey
AU - Dessen, Philippe
AU - Lacroix, Ludovic
AU - Geoerger, Birgit
AU - Job, Bastien
AU - Dirven, Clemens
AU - Varlet, Pascale
AU - Peyre, Mathieu
AU - Dirks, Peter B.
AU - Sainte-Rose, Christian
PY - 2009/4/10
Y1 - 2009/4/10
N2 - Purpose The molecular pathogenesis of pediatric ependymoma remains unclear. Our study was designed to identify genetic changes implicated in ependymoma progression. Patients and Methods We characterized 59 ependymoma samples (33 at diagnosis and 26 at relapse) using array-comparative genomic hybridization (aCGH). Specific chromosomal imbalances were confirmed by fluorescent in situ hybridization, and candidate genes were assessed by real-time quantitative polymerase chain reaction (qPCR), immunohistochemistry, sequencing, and in vitro functional studies. Results aCGH analysis revealed a significant increase in genomic imbalances on relapse compared with diagnosis, such as gain of 9qter and 1q (54% v 21% and 12% v 0%, respectively) and loss of 6q (27% v 6%). Supervised tumor classification showed that gain of 9qter was associated with tumor recurrence, age older than 3 years, and posterior fossa location. Using a candidate-gene strategy, we found an overexpression of two potential oncogenes at the locus 9qter: Tenascin-C and Notch1. Moreover, Notch pathway analysis (qPCR) revealed overexpression of Notch ligands, receptors, and target genes (Hes-1, Hey2, and c-Myc), and downregulation of Notch repressor Fbxw7. We confirmed by immunohistochemistry the overexpression of Tenascin-C and Hes-1. We detected Notch1 missense mutations in 8.3% of the tumors (only in the posterior fossa location and in case of 9q33-34 gain). Furthermore, inhibition of Notch pathway with a γ-secretase inhibitor impaired the growth of ependymoma stem cell cultures. Conclusion The activation of the Notch pathway and Tenascin-C seem to be important events in ependymoma progression and may represent future targets for therapy. We report, to our knowledge for the first time, recurrent oncogenic mutations in pediatric posterior fossa ependymomas.
AB - Purpose The molecular pathogenesis of pediatric ependymoma remains unclear. Our study was designed to identify genetic changes implicated in ependymoma progression. Patients and Methods We characterized 59 ependymoma samples (33 at diagnosis and 26 at relapse) using array-comparative genomic hybridization (aCGH). Specific chromosomal imbalances were confirmed by fluorescent in situ hybridization, and candidate genes were assessed by real-time quantitative polymerase chain reaction (qPCR), immunohistochemistry, sequencing, and in vitro functional studies. Results aCGH analysis revealed a significant increase in genomic imbalances on relapse compared with diagnosis, such as gain of 9qter and 1q (54% v 21% and 12% v 0%, respectively) and loss of 6q (27% v 6%). Supervised tumor classification showed that gain of 9qter was associated with tumor recurrence, age older than 3 years, and posterior fossa location. Using a candidate-gene strategy, we found an overexpression of two potential oncogenes at the locus 9qter: Tenascin-C and Notch1. Moreover, Notch pathway analysis (qPCR) revealed overexpression of Notch ligands, receptors, and target genes (Hes-1, Hey2, and c-Myc), and downregulation of Notch repressor Fbxw7. We confirmed by immunohistochemistry the overexpression of Tenascin-C and Hes-1. We detected Notch1 missense mutations in 8.3% of the tumors (only in the posterior fossa location and in case of 9q33-34 gain). Furthermore, inhibition of Notch pathway with a γ-secretase inhibitor impaired the growth of ependymoma stem cell cultures. Conclusion The activation of the Notch pathway and Tenascin-C seem to be important events in ependymoma progression and may represent future targets for therapy. We report, to our knowledge for the first time, recurrent oncogenic mutations in pediatric posterior fossa ependymomas.
UR - http://www.scopus.com/inward/record.url?scp=64649106130&partnerID=8YFLogxK
U2 - 10.1200/JCO.2007.15.4195
DO - 10.1200/JCO.2007.15.4195
M3 - Article
C2 - 19289631
AN - SCOPUS:64649106130
SN - 0732-183X
VL - 27
SP - 1884
EP - 1892
JO - Journal of Clinical Oncology
JF - Journal of Clinical Oncology
IS - 11
ER -