Computational medical imaging (radiomics) and potential for immuno-oncology

Titre traduit de la contribution: Imagerie médicale computationnelle (radiomique) et potentiel en immuno-oncologie

R. Sun, E. J. Limkin, L. Dercle, S. Reuzé, E. I. Zacharaki, C. Chargari, A. Schernberg, A. S. Dirand, A. Alexis, N. Paragios, Deutsch, C. Ferté, C. Robert

    Résultats de recherche: Contribution à un journalBrève enquêteRevue par des pairs

    15 Citations (Scopus)

    Résumé

    The arrival of immunotherapy has profoundly changed the management of multiple cancers, obtaining unexpected tumour responses. However, until now, the majority of patients do not respond to these new treatments. The identification of biomarkers to determine precociously responding patients is a major challenge. Computational medical imaging (also known as radiomics) is a promising and rapidly growing discipline. This new approach consists in the analysis of high-dimensional data extracted from medical imaging, to further describe tumour phenotypes. This approach has the advantages of being non-invasive, capable of evaluating the tumour and its microenvironment in their entirety, thus characterising spatial heterogeneity, and being easily repeatable over time. The end goal of radiomics is to determine imaging biomarkers as decision support tools for clinical practice and to facilitate better understanding of cancer biology, allowing the assessment of the changes throughout the evolution of the disease and the therapeutic sequence. This review will develop the process of computational imaging analysis and present its potential in immuno-oncology.

    Titre traduit de la contributionImagerie médicale computationnelle (radiomique) et potentiel en immuno-oncologie
    langue originaleAnglais
    Pages (de - à)648-654
    Nombre de pages7
    journalCancer/Radiotherapie
    Volume21
    Numéro de publication6-7
    Les DOIs
    étatPublié - 1 oct. 2017

    Contient cette citation