TY - JOUR
T1 - Concomitant chemoradiotherapy versus acceleration of radiotherapy with or without concomitant chemotherapy in locally advanced head and neck carcinoma (GORTEC 99-02)
T2 - An open-label phase 3 randomised trial
AU - Bourhis, Jean
AU - Sire, Christian
AU - Graff, Pierre
AU - Grégoire, Vincent
AU - Maingon, Philippe
AU - Calais, Gilles
AU - Gery, Bernard
AU - Martin, Laurent
AU - Alfonsi, Marc
AU - Desprez, Patrick
AU - Pignon, Thierry
AU - Bardet, Etienne
AU - Rives, Michel
AU - Geoffrois, Lionel
AU - Daly-Schveitzer, Nicolas
AU - Sen, Sok
AU - Tuchais, Claude
AU - Dupuis, Olivier
AU - Guerif, Stéphane
AU - Lapeyre, Michel
AU - Favrel, Véronique
AU - Hamoir, Marc
AU - Lusinchi, Antoine
AU - Temam, Stéphane
AU - Pinna, Antonella
AU - Tao, Yun Gan
AU - Blanchard, Pierre
AU - Aupérin, Anne
N1 - Funding Information:
The trial was funded by two public grants (PHRC) from the French Ministry of Health. We thank Frédéric Rolland (Centre R Gauducheau, Nantes, France), Béatrix Rhein, (Centre Hospitalier Universitaire, Limoges, France), Philippe Lagarde (Centre Bergonié, Bordeaux, France), Alexandre Cornely, Pierre Wibault, François Janot, and Ana Chauvain (Institut Gustave Roussy, Radiation Oncology, Head and Neck Departments, Villejuif, France).
PY - 2012/2/1
Y1 - 2012/2/1
N2 - Background: Concomitant chemoradiotherapy and accelerated radiotherapy independently improve outcomes for patients with locally advanced head and neck squamous-cell carcinoma (HNSCC). We aimed to assess the efficacy and safety of a combination of these approaches. Methods: In our open-label phase 3 randomised trial, we enrolled patients with locally advanced, stage III and IV (non-metastatic) HNSCC and an Eastern Cooperative Oncology Group performance status of 0-2. We randomly allocated patients centrally with a computer program (with centre, T stage, N stage, and localisation as minimisation factors) in a 1:1:1 ratio to receive conventional chemoradiotherapy (70 Gy in 7 weeks plus three cycles of 4 days' concomitant carboplatin-fluorouracil), accelerated radiotherapy-chemotherapy (70 Gy in 6 weeks plus two cycles of 5 days' concomitant carboplatin-fluorouracil), or very accelerated radiotherapy alone (64·8 Gy [1·8 Gy twice daily] in 3·5 weeks). The primary endpoint, progression-free survival (PFS), was assessed in all enrolled patients. This trial is completed. The trial is registered with ClinicalTrials.gov, number NCT00828386. Findings: Between Feb 29, 2000, and May 9, 2007, we randomly allocated 279 patients to receive conventional chemoradiotherapy, 280 to accelerated radiotherapy-chemotherapy, and 281 to very accelerated radiotherapy. Median follow-up was 5·2 years (IQR 4·9-6·2); rates of chemotherapy and radiotherapy compliance were good in all groups. Accelerated radiotherapy-chemotherapy offered no PFS benefit compared with conventional chemoradiotherapy (HR 1·02, 95% CI 0·84-1·23; p=0·88) or very accelerated radiotherapy (0·83, 0·69-1·01; p=0·060); conventional chemoradiotherapy improved PFS compared with very accelerated radiotherapy (0·82, 0·67-0·99; p=0·041). 3-year PFS was 37·6% (95% CI 32·1-43·4) after conventional chemoradiotherapy, 34·1% (28·7-39·8) after accelerated radiotherapy-chemotherapy, and 32·2% (27·0-37·9) after very accelerated radiotherapy. More patients in the very accelerated radiotherapy group had RTOG grade 3-4 acute mucosal toxicity (226 [84%] of 268 patients) compared with accelerated radiotherapy-chemotherapy (205 [76%] of 271 patients) or conventional chemoradiotherapy (180 [69%] of 262; p=0·0001). 158 (60%) of 265 patients in the conventional chemoradiotherapy group, 176 (64%) of 276 patients in the accelerated radiotherapy-chemotherapy group, and 190 (70%) of 272 patients in the very accelerated radiotherapy group were intubated with feeding tubes during treatment (p=0·045). Interpretation: Chemotherapy has a substantial treatment effect given concomitantly with radiotherapy and acceleration of radiotherapy cannot compensate for the absence of chemotherapy. We noted the most favourable outcomes for conventional chemoradiotherapy, suggesting that acceleration of radiotherapy is probably not beneficial in concomitant chemoradiotherapy schedules. Funding: French Ministry of Health.
AB - Background: Concomitant chemoradiotherapy and accelerated radiotherapy independently improve outcomes for patients with locally advanced head and neck squamous-cell carcinoma (HNSCC). We aimed to assess the efficacy and safety of a combination of these approaches. Methods: In our open-label phase 3 randomised trial, we enrolled patients with locally advanced, stage III and IV (non-metastatic) HNSCC and an Eastern Cooperative Oncology Group performance status of 0-2. We randomly allocated patients centrally with a computer program (with centre, T stage, N stage, and localisation as minimisation factors) in a 1:1:1 ratio to receive conventional chemoradiotherapy (70 Gy in 7 weeks plus three cycles of 4 days' concomitant carboplatin-fluorouracil), accelerated radiotherapy-chemotherapy (70 Gy in 6 weeks plus two cycles of 5 days' concomitant carboplatin-fluorouracil), or very accelerated radiotherapy alone (64·8 Gy [1·8 Gy twice daily] in 3·5 weeks). The primary endpoint, progression-free survival (PFS), was assessed in all enrolled patients. This trial is completed. The trial is registered with ClinicalTrials.gov, number NCT00828386. Findings: Between Feb 29, 2000, and May 9, 2007, we randomly allocated 279 patients to receive conventional chemoradiotherapy, 280 to accelerated radiotherapy-chemotherapy, and 281 to very accelerated radiotherapy. Median follow-up was 5·2 years (IQR 4·9-6·2); rates of chemotherapy and radiotherapy compliance were good in all groups. Accelerated radiotherapy-chemotherapy offered no PFS benefit compared with conventional chemoradiotherapy (HR 1·02, 95% CI 0·84-1·23; p=0·88) or very accelerated radiotherapy (0·83, 0·69-1·01; p=0·060); conventional chemoradiotherapy improved PFS compared with very accelerated radiotherapy (0·82, 0·67-0·99; p=0·041). 3-year PFS was 37·6% (95% CI 32·1-43·4) after conventional chemoradiotherapy, 34·1% (28·7-39·8) after accelerated radiotherapy-chemotherapy, and 32·2% (27·0-37·9) after very accelerated radiotherapy. More patients in the very accelerated radiotherapy group had RTOG grade 3-4 acute mucosal toxicity (226 [84%] of 268 patients) compared with accelerated radiotherapy-chemotherapy (205 [76%] of 271 patients) or conventional chemoradiotherapy (180 [69%] of 262; p=0·0001). 158 (60%) of 265 patients in the conventional chemoradiotherapy group, 176 (64%) of 276 patients in the accelerated radiotherapy-chemotherapy group, and 190 (70%) of 272 patients in the very accelerated radiotherapy group were intubated with feeding tubes during treatment (p=0·045). Interpretation: Chemotherapy has a substantial treatment effect given concomitantly with radiotherapy and acceleration of radiotherapy cannot compensate for the absence of chemotherapy. We noted the most favourable outcomes for conventional chemoradiotherapy, suggesting that acceleration of radiotherapy is probably not beneficial in concomitant chemoradiotherapy schedules. Funding: French Ministry of Health.
UR - http://www.scopus.com/inward/record.url?scp=84856485375&partnerID=8YFLogxK
U2 - 10.1016/S1470-2045(11)70346-1
DO - 10.1016/S1470-2045(11)70346-1
M3 - Article
C2 - 22261362
AN - SCOPUS:84856485375
SN - 1470-2045
VL - 13
SP - 145
EP - 153
JO - The Lancet Oncology
JF - The Lancet Oncology
IS - 2
ER -