Résumé
Intestinal immune homeostasis requires dynamic crosstalk between innate and adaptive immune cells. Dendritic cells (DCs) exist as multiple phenotypically and functionally distinct sub-populations within tissues, where they initiate immune responses and promote homeostasis. In the gut, there exists a minor DC subset defined as CD103+ CD11b- that also expresses the chemokine receptor XCR1. In other tissues, XCR1+ DCs cross-present antigen and contribute to immunity against viruses and cancer, however the roles of XCR1+ DCs and XCR1 in the intestine are unknown. We showed that mice lacking XCR1+ DCs are specifically deficient in intraepithelial and lamina propria (LP) T cell populations, with remaining T cells exhibiting an atypical phenotype and being prone to death, and are also more susceptible to chemically-induced colitis. Mice deficient in either XCR1 or its ligand, XCL1, similarly possess diminished intestinal T cell populations, and an accumulation of XCR1+ DCs in the gut. Combined with transcriptome and surface marker expression analysis, these observations lead us to hypothesise that T cell-derived XCL1 facilitates intestinal XCR1+ DC activation and migration, and that XCR1+ DCs in turn provide support for T cell survival and function. Thus XCR1+ DCs and the XCR1/XCL1 chemokine axis have previously-unappreciated roles in intestinal immune homeostasis.
langue originale | Anglais |
---|---|
Numéro d'article | 23505 |
journal | Scientific Reports |
Volume | 6 |
Les DOIs | |
état | Publié - 23 mars 2016 |
Modification externe | Oui |