TY - JOUR
T1 - Daunorubicin- and mitoxantrone-triggered phosphatidylcholine hydrolysis
T2 - Implication in drug-induced ceramide generation and apoptosis
AU - Bettaïeb, Ali
AU - Plo, Isabelle
AU - Mansat-De Mas, Véronique
AU - Quillet-Mary, Anne
AU - Levade, Thierry
AU - Laurent, Guy
AU - Jaffrézou, Jean Pierre
PY - 1999/1/1
Y1 - 1999/1/1
N2 - Several studies have suggested that diacylglycerol can affect the induction of apoptosis induced by toxicants and ceramide. The present study demonstrates that clinically relevant concentrations of the chemotherapeutic drugs daunorubicin and mitoxantrone (0.2-1 μM) transiently stimulated concurrently with sphingomyelin-derived ceramide generation and diacylglycerol and phosphorylcholine production within 4 to 10 min via phospholipase C hydrolysis of phosphatidylcholine. Pretreatment of cells with the xanthogenate compound D609, a potent inhibitor of phosphatidylcholine- phospholipase C, led to significant inhibition of drug triggered diacylglycerol and phosphorylcholine production and to a sustained increase in ceramide levels for a period up to 2 h. Moreover, D609 pretreatment induced both cell death and ceramide generation at daunorubicin and mitoxantrone concentrations previously shown to be ineffective (i.e., 0.1 μM). These results underline the importance of diacylglycerol in the regulation of programmed cell death and strongly argue for a balance between apoptotic (ceramide) and survival (diacylglycerol) signal transducers.
AB - Several studies have suggested that diacylglycerol can affect the induction of apoptosis induced by toxicants and ceramide. The present study demonstrates that clinically relevant concentrations of the chemotherapeutic drugs daunorubicin and mitoxantrone (0.2-1 μM) transiently stimulated concurrently with sphingomyelin-derived ceramide generation and diacylglycerol and phosphorylcholine production within 4 to 10 min via phospholipase C hydrolysis of phosphatidylcholine. Pretreatment of cells with the xanthogenate compound D609, a potent inhibitor of phosphatidylcholine- phospholipase C, led to significant inhibition of drug triggered diacylglycerol and phosphorylcholine production and to a sustained increase in ceramide levels for a period up to 2 h. Moreover, D609 pretreatment induced both cell death and ceramide generation at daunorubicin and mitoxantrone concentrations previously shown to be ineffective (i.e., 0.1 μM). These results underline the importance of diacylglycerol in the regulation of programmed cell death and strongly argue for a balance between apoptotic (ceramide) and survival (diacylglycerol) signal transducers.
UR - http://www.scopus.com/inward/record.url?scp=0038027936&partnerID=8YFLogxK
U2 - 10.1124/mol.55.1.118
DO - 10.1124/mol.55.1.118
M3 - Article
C2 - 9882705
AN - SCOPUS:0038027936
SN - 0026-895X
VL - 55
SP - 118
EP - 125
JO - Molecular Pharmacology
JF - Molecular Pharmacology
IS - 1
ER -