Deciphering the response and resistance to immune-checkpoint inhibitors in lung cancer with artificial intelligence-based analysis: when PIONeeR meets QUANTIC

Joseph Ciccolini, Sébastien Benzekry, Fabrice Barlesi

    Résultats de recherche: Contribution à un journal!!Comment/debate

    11 Citations (Scopus)

    Résumé

    This project aims to generate dense longitudinal data in lung cancer patients undergoing anti-PD1/PDL1 therapy. Mathematical modelling with mechanistic learning algorithms will help decipher the mechanisms underlying the response or resistance to immunotherapy. A better understanding of these mechanisms should help identifying actionable items to increase the efficacy of immune-checkpoint inhibitors.

    langue originaleAnglais
    Pages (de - à)337-338
    Nombre de pages2
    journalBritish Journal of Cancer
    Volume123
    Numéro de publication3
    Les DOIs
    étatPublié - 4 août 2020

    Contient cette citation