Deep Learning Based Registration Using Spatial Gradients and Noisy Segmentation Labels

Théo Estienne, Maria Vakalopoulou, Enzo Battistella, Alexandre Carré, Théophraste Henry, Marvin Lerousseau, Charlotte Robert, Nikos Paragios, Eric Deutsch

    Résultats de recherche: Le chapitre dans un livre, un rapport, une anthologie ou une collection!!Conference contributionRevue par des pairs

    4 Citations (Scopus)

    Résumé

    Image registration is one of the most challenging problems in medical image analysis. In the recent years, deep learning based approaches became quite popular, providing fast and performing registration strategies. In this short paper, we summarise our work presented on Learn2Reg challenge 2020. The main contributions of our work rely on (i) a symmetric formulation, predicting the transformations from source to target and from target to source simultaneously, enforcing the trained representations to be similar and (ii) integration of variety of publicly available datasets used both for pretraining and for augmenting segmentation labels. Our method reports a mean dice of 0.64 for task 3 and 0.85 for task 4 on the test sets, taking third place on the challenge. Our code and models are publicly available at https://github.com/TheoEst/abdominal_registration and https://github.com/TheoEst/hippocampus_registration.

    langue originaleAnglais
    titreSegmentation, Classification, and Registration of Multi-modality Medical Imaging Data - MICCAI 2020 Challenges, ABCs 2020, L2R 2020, TN-SCUI 2020, Held in Conjunction with MICCAI 2020, Proceedings
    rédacteurs en chefNadya Shusharina, Mattias P. Heinrich, Ruobing Huang
    EditeurSpringer Science and Business Media Deutschland GmbH
    Pages87-93
    Nombre de pages7
    ISBN (imprimé)9783030718268
    Les DOIs
    étatPublié - 1 janv. 2021
    EvénementAnatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Images Challenge, ABCs 2020, Learn2Reg Challenge, L2R 2020 and Thyroid Nodule Segmentation and Classification in Ultrasound Images Challenge, TN-SCUI 2020 held in conjunction with 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Pérou
    Durée: 4 oct. 20208 oct. 2020

    Série de publications

    NomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume12587 LNCS
    ISSN (imprimé)0302-9743
    ISSN (Electronique)1611-3349

    Une conférence

    Une conférenceAnatomical Brain Barriers to Cancer Spread: Segmentation from CT and MR Images Challenge, ABCs 2020, Learn2Reg Challenge, L2R 2020 and Thyroid Nodule Segmentation and Classification in Ultrasound Images Challenge, TN-SCUI 2020 held in conjunction with 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
    Pays/TerritoirePérou
    La villeLima
    période4/10/208/10/20

    Contient cette citation