Differentiable Gamma Index-Based Loss Functions: Accelerating Monte-Carlo Radiotherapy Dose Simulation

Sonia Martinot, Nikos Komodakis, Maria Vakalopoulou, Norbert Bus, Charlotte Robert, Eric Deutsch, Nikos Paragios

    Résultats de recherche: Le chapitre dans un livre, un rapport, une anthologie ou une collection!!Conference contributionRevue par des pairs

    Résumé

    The Gamma index Passing Rate (GPR) is considered the preferred metric to evaluate dose distributions in order to deliver safe radiotherapy treatments. For this reason, in the context of accelerating Monte-Carlo dose simulations using deep neural networks, the GPR remains the default clinical metric used to validate the predictions of the models. However, the optimization criterion that is used for training these neural networks is based on loss functions that are different than GPR. To address this important issue, in this work we introduce a new class of GPR-based loss functions for deep learning. These functions allow us to successfully train neural networks that can directly yield the best dose predictions from a clinical standpoint. Our approach overcomes the mathematical non-differentiability of the GPR, thus allowing a successful application of gradient descent. Moreover, it brings the GPR computation time down to milliseconds, therefore enabling fast trainings. We demonstrate that models trained with our GPR-based loss functions outperform models trained with other commonly used loss functions with respect to several metrics and display a 15% improvement of the GPR over the test data. Code is available at https://rb.gy/vf5jwv.

    langue originaleAnglais
    titreInformation Processing in Medical Imaging - 28th International Conference, IPMI 2023, Proceedings
    rédacteurs en chefAlejandro Frangi, Marleen de Bruijne, Demian Wassermann, Nassir Navab
    EditeurSpringer Science and Business Media Deutschland GmbH
    Pages485-496
    Nombre de pages12
    ISBN (imprimé)9783031340475
    Les DOIs
    étatPublié - 1 janv. 2023
    Evénement28th International Conference on Information Processing in Medical Imaging, IPMI 2023 - San Carlos de Bariloche, Argentine
    Durée: 18 juin 202323 juin 2023

    Série de publications

    NomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume13939 LNCS
    ISSN (imprimé)0302-9743
    ISSN (Electronique)1611-3349

    Une conférence

    Une conférence28th International Conference on Information Processing in Medical Imaging, IPMI 2023
    Pays/TerritoireArgentine
    La villeSan Carlos de Bariloche
    période18/06/2323/06/23

    Contient cette citation