Dimensionality reduction for visualizing single-cell data using UMAP

Etienne Becht, Leland McInnes, John Healy, Charles Antoine Dutertre, Immanuel W.H. Kwok, Lai Guan Ng, Florent Ginhoux, Evan W. Newell

Résultats de recherche: Contribution à un journalArticleRevue par des pairs

2602 Citations (Scopus)

Résumé

Advances in single-cell technologies have enabled high-resolution dissection of tissue composition. Several tools for dimensionality reduction are available to analyze the large number of parameters generated in single-cell studies. Recently, a nonlinear dimensionality-reduction technique, uniform manifold approximation and projection (UMAP), was developed for the analysis of any type of high-dimensional data. Here we apply it to biological data, using three well-characterized mass cytometry and single-cell RNA sequencing datasets. Comparing the performance of UMAP with five other tools, we find that UMAP provides the fastest run times, highest reproducibility and the most meaningful organization of cell clusters. The work highlights the use of UMAP for improved visualization and interpretation of single-cell data.

langue originaleAnglais
Pages (de - à)38-47
Nombre de pages10
journalNature Biotechnology
Volume37
Numéro de publication1
Les DOIs
étatPublié - 1 janv. 2019
Modification externeOui

Contient cette citation