Electropermeabilization of Inner and Outer Cell Membranes with Microsecond Pulsed Electric Fields: Quantitative Study with Calcium Ions

Hanna Hanna, Agnese Denzi, Micaela Liberti, Franck M. André, Lluis M. Mir

Résultats de recherche: Contribution à un journalArticleRevue par des pairs

57 Citations (Scopus)

Résumé

Microsecond pulsed electric fields (μsPEF) permeabilize the plasma membrane (PM) and are widely used in research, medicine and biotechnology. For internal membranes permeabilization, nanosecond pulsed electric fields (nsPEF) are applied but this technology is complex to use. Here we report that the endoplasmic reticulum (ER) membrane can also be electropermeabilized by one 100 μs pulse without affecting the cell viability. Indeed, using Ca2+ as a permeabilization marker, we observed cytosolic Ca2+ peaks in two different cell types after one 100 μs pulse in a medium without Ca2+. Thapsigargin abolished these Ca2+ peaks demonstrating that the calcium is released from the ER. Moreover, IP3R and RyR inhibitors did not modify these peaks showing that they are due to the electropermeabilization of the ER membrane and not to ER Ca2+ channels activation. Finally, the comparison of the two cell types suggests that the PM and the ER permeabilization thresholds are affected by the sizes of the cell and the ER. In conclusion, this study demonstrates that μsPEF, which are easier to control than nsPEF, can permeabilize internal membranes. Besides, μsPEF interaction with either the PM or ER, can be an efficient tool to modulate the cytosolic calcium concentration and study Ca2+ roles in cell physiology.

langue originaleAnglais
Numéro d'article13079
journalScientific Reports
Volume7
Numéro de publication1
Les DOIs
étatPublié - 1 déc. 2017
Modification externeOui

Contient cette citation