TY - JOUR
T1 - Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice
AU - Saleh, Maya
AU - Mathison, John C.
AU - Wolinski, Melissa K.
AU - Bensinger, Steve J.
AU - Fitzgerald, Patrick
AU - Droin, Nathalie
AU - Ulevitch, Richard J.
AU - Green, Douglas R.
AU - Nicholson, Donald W.
N1 - Funding Information:
Acknowledgements M.S. is supported by a CIHR post-doctoral fellowship. D.R.G. is supported by grants from the US NIH. We thank S. Granger and A. Coddington for help with the Bio-plex system and C. Bonzon for help with MEF preparation.
PY - 2006/4/20
Y1 - 2006/4/20
N2 - Caspases function in both apoptosis and inflammatory cytokine processing and thereby have a role in resistance to sepsis1. Here we describe a novel role for a caspase in dampening responses to bacterial infection. We show that in mice, gene-targeted deletion of caspase-12 renders animals resistant to peritonitis and septic shock. The resulting survival advantage was conferred by the ability of the caspase-12-deficient mice to clear bacterial infection more efficiently than wild-type littermates. Caspase-12 dampened the production of the pro-inflammatory cytokines interleukin (IL)-1β, IL-18 (interferon (IFN)-γ inducing factor) and IFN-γ, but not tumour-necrosis factor-α and IL-6, in response to various bacterial components that stimulate Toll-like receptor and NOD pathways. The IFN-γ pathway was crucial in mediating survival of septic caspase-12-deficient mice, because administration of neutralizing antibodies to IFN-γ receptors ablated the survival advantage that otherwise occurred in these animals. Mechanistically, caspase-12 associated with caspase-1 and inhibited its activity. Notably, the protease function of caspase-12 was not necessary for this effect, as the catalytically inactive caspase-12 mutant Cys299Ala also inhibited caspase-1 and IL-1β production to the same extent as wild-type caspase-12. In this regard, caspase-12 seems to be the cFLIP counterpart for regulating the inflammatory branch of the caspase cascade. In mice, caspase-12 deficiency confers resistance to sepsis and its presence exerts a dominant-negative suppressive effect on caspase-1, resulting in enhanced vulnerability to bacterial infection and septic mortality.
AB - Caspases function in both apoptosis and inflammatory cytokine processing and thereby have a role in resistance to sepsis1. Here we describe a novel role for a caspase in dampening responses to bacterial infection. We show that in mice, gene-targeted deletion of caspase-12 renders animals resistant to peritonitis and septic shock. The resulting survival advantage was conferred by the ability of the caspase-12-deficient mice to clear bacterial infection more efficiently than wild-type littermates. Caspase-12 dampened the production of the pro-inflammatory cytokines interleukin (IL)-1β, IL-18 (interferon (IFN)-γ inducing factor) and IFN-γ, but not tumour-necrosis factor-α and IL-6, in response to various bacterial components that stimulate Toll-like receptor and NOD pathways. The IFN-γ pathway was crucial in mediating survival of septic caspase-12-deficient mice, because administration of neutralizing antibodies to IFN-γ receptors ablated the survival advantage that otherwise occurred in these animals. Mechanistically, caspase-12 associated with caspase-1 and inhibited its activity. Notably, the protease function of caspase-12 was not necessary for this effect, as the catalytically inactive caspase-12 mutant Cys299Ala also inhibited caspase-1 and IL-1β production to the same extent as wild-type caspase-12. In this regard, caspase-12 seems to be the cFLIP counterpart for regulating the inflammatory branch of the caspase cascade. In mice, caspase-12 deficiency confers resistance to sepsis and its presence exerts a dominant-negative suppressive effect on caspase-1, resulting in enhanced vulnerability to bacterial infection and septic mortality.
UR - http://www.scopus.com/inward/record.url?scp=33646175602&partnerID=8YFLogxK
U2 - 10.1038/nature04656
DO - 10.1038/nature04656
M3 - Article
C2 - 16625199
AN - SCOPUS:33646175602
SN - 0028-0836
VL - 440
SP - 1064
EP - 1068
JO - Nature
JF - Nature
IS - 7087
ER -