TY - JOUR
T1 - Enhancement of radiation response by roscovitine in human breast carcinoma in vitro and in vivo
AU - Maggiorella, Laurence
AU - Deutsch, Eric
AU - Frascogna, Valérie
AU - Chavaudra, Nicole
AU - Jeanson, Laurence
AU - Milliat, Fabien
AU - Eschwege, François
AU - Bourhis, Jean
PY - 2003/5/15
Y1 - 2003/5/15
N2 - Frequent deregulation of cyclin-dependent kinase (CDK) activation associated with loss of cell cycle control was found in most of human cancers. A recent development of a new class of antineoplasic agents targeting the cell cycle emerged as a small molecule CDK inhibitor, roscovitine, which presents potential antiproliferative and antitumoral effects in human tumors. Additional studies reported that roscovitine combined with cytotoxic agents can cooperate with DNA damage to activate p53 protein. However, little is known about the biological effect of roscovitine combined with ionizing radiation (IR) in human carcinoma, and no studies were reported thus far in p53 mutated carcinoma. In the breast cancer cell line MDA-MB 231, which lacks a functional p53 protein, we found a strong radiosensitization effect of roscovitine in vitro by clonogenic survival assay and in vivo in MDA-MB 231 xenograft model. Using Pulse Field Gel Electrophoresis, a strong impairment in DNA-double-strand break rejoining was observed after roscovitine and IR treatment as compared with IR alone. Cell cycle analysis showed a G2 delay and no increase in radiation-induced apoptosis in the cells treated with IR or roscovitine and IR. On the other hand, we found a significant induction in micronuclei frequency after roscovitine and IR treatment as compared with IR alone. This effect was also observed in BALB murine cells in contrast to SCID murine cells, which are deficient in DNA-PKcs, suggesting a possible DNA-double-strand break repair defect in the non-homologous end joining pathways. In MDA-MB 231 cells, the radiosensitization effect of roscovitine was associated with an inhibition of the DNA-dependent protein kinase activity caused by a marked decrease in Ku-DNA binding by using the electrophoretic mobility shift assay. In conclusion, we found a novel effect on DNA repair of the CDK inhibitor roscovitine, which acts as a radiosensitizer in vitro and in vivo in breast cancer cells lacking a functional p53.
AB - Frequent deregulation of cyclin-dependent kinase (CDK) activation associated with loss of cell cycle control was found in most of human cancers. A recent development of a new class of antineoplasic agents targeting the cell cycle emerged as a small molecule CDK inhibitor, roscovitine, which presents potential antiproliferative and antitumoral effects in human tumors. Additional studies reported that roscovitine combined with cytotoxic agents can cooperate with DNA damage to activate p53 protein. However, little is known about the biological effect of roscovitine combined with ionizing radiation (IR) in human carcinoma, and no studies were reported thus far in p53 mutated carcinoma. In the breast cancer cell line MDA-MB 231, which lacks a functional p53 protein, we found a strong radiosensitization effect of roscovitine in vitro by clonogenic survival assay and in vivo in MDA-MB 231 xenograft model. Using Pulse Field Gel Electrophoresis, a strong impairment in DNA-double-strand break rejoining was observed after roscovitine and IR treatment as compared with IR alone. Cell cycle analysis showed a G2 delay and no increase in radiation-induced apoptosis in the cells treated with IR or roscovitine and IR. On the other hand, we found a significant induction in micronuclei frequency after roscovitine and IR treatment as compared with IR alone. This effect was also observed in BALB murine cells in contrast to SCID murine cells, which are deficient in DNA-PKcs, suggesting a possible DNA-double-strand break repair defect in the non-homologous end joining pathways. In MDA-MB 231 cells, the radiosensitization effect of roscovitine was associated with an inhibition of the DNA-dependent protein kinase activity caused by a marked decrease in Ku-DNA binding by using the electrophoretic mobility shift assay. In conclusion, we found a novel effect on DNA repair of the CDK inhibitor roscovitine, which acts as a radiosensitizer in vitro and in vivo in breast cancer cells lacking a functional p53.
UR - http://www.scopus.com/inward/record.url?scp=0038519961&partnerID=8YFLogxK
M3 - Article
C2 - 12750274
AN - SCOPUS:0038519961
SN - 0008-5472
VL - 63
SP - 2513
EP - 2517
JO - Cancer Research
JF - Cancer Research
IS - 10
ER -