Estimating SARS-CoV-2 infection probabilities with serological data and a Bayesian mixture model

Benjamin Glemain, Xavier de Lamballerie, Marie Zins, Gianluca Severi, Mathilde Touvier, Jean François Deleuze, Nathanaël Lapidus, Fabrice Carrat, Fabrice Carrat, Pierre Yves Ancel, Marie Aline Charles, Gianluca Severi, Mathilde Touvier, Marie Zins, Sofiane Kab, Adeline Renuy, Stephane Le-Got, Celine Ribet, Mireille Pellicer, Emmanuel WiernikMarcel Goldberg, Fanny Artaud, Pascale Gerbouin-Rérolle, Mélody Enguix, Camille Laplanche, Roselyn Gomes-Rima, Lyan Hoang, Emmanuelle Correia, Alpha Amadou Barry, Nadège Senina, Julien Allegre, Fabien Szabo de Edelenyi, Nathalie Druesne-Pecollo, Younes Esseddik, Serge Hercberg, Mélanie Deschasaux, Marie Aline Charles, Valérie Benhammou, Anass Ritmi, Laetitia Marchand, Cecile Zaros, Elodie Lordmi, Adriana Candea, Sophie de Visme, Thierry Simeon, Xavier Thierry, Bertrand Geay, Marie Noelle Dufourg, Karen Milcent, Delphine Rahib, Nathalie Lydie, Clovis Lusivika-Nzinga, Gregory Pannetier, Nathanael Lapidus, Isabelle Goderel, Céline Dorival, Jérôme Nicol, Olivier Robineau, Cindy Lai, Liza Belhadji, Hélène Esperou, Sandrine Couffin-Cadiergues, Jean Marie Gagliolo, Hélène Blanché, Jean Marc Sébaoun, Jean Christophe Beaudoin, Laetitia Gressin, Valérie Morel, Ouissam Ouili, Jean François Deleuze, Laetitia Ninove, Stéphane Priet, Paola Mariela Saba Villarroel, Toscane Fourié, Souand Mohamed Ali, Abdenour Amroun, Morgan Seston, Nazli Ayhan, Boris Pastorino, Xavier de Lamballerie

Résultats de recherche: Contribution à un journalArticleRevue par des pairs

Résumé

The individual results of SARS-CoV-2 serological tests measured after the first pandemic wave of 2020 cannot be directly interpreted as a probability of having been infected. Plus, these results are usually returned as a binary or ternary variable, relying on predefined cut-offs. We propose a Bayesian mixture model to estimate individual infection probabilities, based on 81,797 continuous anti-spike IgG tests from Euroimmun collected in France after the first wave. This approach used serological results as a continuous variable, and was therefore not based on diagnostic cut-offs. Cumulative incidence, which is necessary to compute infection probabilities, was estimated according to age and administrative region. In France, we found that a “negative” or a “positive” test, as classified by the manufacturer, could correspond to a probability of infection as high as 61.8% or as low as 67.7%, respectively. “Indeterminate” tests encompassed probabilities of infection ranging from 10.8 to 96.6%. Our model estimated tailored individual probabilities of SARS-CoV-2 infection based on age, region, and serological result. It can be applied in other contexts, if estimates of cumulative incidence are available.

langue originaleAnglais
Numéro d'article9503
journalScientific Reports
Volume14
Numéro de publication1
Les DOIs
étatPublié - 1 déc. 2024
Modification externeOui

Contient cette citation