TY - JOUR
T1 - Genetic identification of patients with AML older than 60 years achieving long-term survival with intensive chemotherapy
AU - Itzykson, Raphael
AU - Fournier, Elise
AU - Berthon, Céline
AU - Röllig, Christoph
AU - Braun, Thorsten
AU - Marceau-Renaut, Alice
AU - Pautas, Cécile
AU - Nibourel, Olivier
AU - Lemasle, Emilie
AU - Micol, Jean Baptiste
AU - Adès, Lionel
AU - Lebon, Delphine
AU - Malfuson, Jean Valère
AU - Gastaud, Lauris
AU - Goursaud, Laure
AU - Raffoux, Emmanuel
AU - Wattebled, Kevin James
AU - Rousselot, Philippe
AU - Thomas, Xavier
AU - Chantepie, Sylvain
AU - Cluzeau, Thomas
AU - Serve, Hubert
AU - Boissel, Nicolas
AU - Terré, Christine
AU - Celli-Lebras, Karine
AU - Preudhomme, Claude
AU - Thiede, Christian
AU - Dombret, Hervé
AU - Gardin, Claude
AU - Duployez, Nicolas
N1 - Publisher Copyright:
© 2021 American Society of Hematology
PY - 2021/8/19
Y1 - 2021/8/19
N2 - To design a simple and reproducible classifier predicting the overall survival (OS) of patients with acute myeloid leukemia (AML) ≥60 years of age treated with 7 + 3, we sequenced 37 genes in 471 patients from the ALFA1200 (Acute Leukemia French Association) study (median age, 68 years). Mutation patterns and OS differed between the 84 patients with poor-risk cytogenetics and the 387 patients with good (n = 13), intermediate (n = 339), or unmeasured (n = 35) cytogenetic risk. TP53 (hazards ratio [HR], 2.49; P = .0003) and KRAS (HR, 3.60; P = .001) mutations independently worsened the OS of patients with poor-risk cytogenetics. In those without poor-risk cytogenetics, NPM1 (HR, 0.57; P = .0004), FLT3 internal tandem duplications with low (HR, 1.85; P = .0005) or high (HR, 3.51; P < 10−4) allelic ratio, DNMT3A (HR, 1.86; P < 10−4), NRAS (HR, 1.54; P = .019), and ASXL1 (HR, 1.89; P = .0003) mutations independently predicted OS. Combining cytogenetic risk and mutations in these 7 genes, 39.1% of patients could be assigned to a “go-go” tier with a 2-year OS of 66.1%, 7.6% to the “no-go” group (2-year OS 2.8%), and 3.3% of to the “slow-go” group (2-year OS of 39.1%; P < 10−5). Across 3 independent validation cohorts, 31.2% to 37.7% and 11.2% to 13.5% of patients were assigned to the go-go and the no-go tiers, respectively, with significant differences in OS between tiers in all 3 trial cohorts (HDF [Hauts-de-France], n = 141, P = .003; and SAL [Study Alliance Leukemia], n = 46; AMLSG [AML Study Group], n = 223, both P < 10−5). The ALFA decision tool is a simple, robust, and discriminant prognostic model for AML patients ≥60 years of age treated with intensive chemotherapy. This model can instruct the design of trials comparing the 7 + 3 standard of care with less intensive regimens.
AB - To design a simple and reproducible classifier predicting the overall survival (OS) of patients with acute myeloid leukemia (AML) ≥60 years of age treated with 7 + 3, we sequenced 37 genes in 471 patients from the ALFA1200 (Acute Leukemia French Association) study (median age, 68 years). Mutation patterns and OS differed between the 84 patients with poor-risk cytogenetics and the 387 patients with good (n = 13), intermediate (n = 339), or unmeasured (n = 35) cytogenetic risk. TP53 (hazards ratio [HR], 2.49; P = .0003) and KRAS (HR, 3.60; P = .001) mutations independently worsened the OS of patients with poor-risk cytogenetics. In those without poor-risk cytogenetics, NPM1 (HR, 0.57; P = .0004), FLT3 internal tandem duplications with low (HR, 1.85; P = .0005) or high (HR, 3.51; P < 10−4) allelic ratio, DNMT3A (HR, 1.86; P < 10−4), NRAS (HR, 1.54; P = .019), and ASXL1 (HR, 1.89; P = .0003) mutations independently predicted OS. Combining cytogenetic risk and mutations in these 7 genes, 39.1% of patients could be assigned to a “go-go” tier with a 2-year OS of 66.1%, 7.6% to the “no-go” group (2-year OS 2.8%), and 3.3% of to the “slow-go” group (2-year OS of 39.1%; P < 10−5). Across 3 independent validation cohorts, 31.2% to 37.7% and 11.2% to 13.5% of patients were assigned to the go-go and the no-go tiers, respectively, with significant differences in OS between tiers in all 3 trial cohorts (HDF [Hauts-de-France], n = 141, P = .003; and SAL [Study Alliance Leukemia], n = 46; AMLSG [AML Study Group], n = 223, both P < 10−5). The ALFA decision tool is a simple, robust, and discriminant prognostic model for AML patients ≥60 years of age treated with intensive chemotherapy. This model can instruct the design of trials comparing the 7 + 3 standard of care with less intensive regimens.
UR - http://www.scopus.com/inward/record.url?scp=85113245084&partnerID=8YFLogxK
U2 - 10.1182/blood.2021011103
DO - 10.1182/blood.2021011103
M3 - Article
C2 - 34410352
AN - SCOPUS:85113245084
SN - 0006-4971
VL - 138
SP - 507
EP - 519
JO - Blood
JF - Blood
IS - 7
ER -