TY - JOUR
T1 - Gfi-1B promoter remains associated with active chromatin marks throughout erythroid differentiation of human primary progenitor cells
AU - Laurent, Benoît
AU - Randrianarison-Huetz, Voahangy
AU - Kadri, Zahra
AU - Roméo, Paul Henri
AU - Porteu, Françoise
AU - Duménil, Dominique
PY - 2009/1/1
Y1 - 2009/1/1
N2 - Growth Factor Independent-1B (Gfi-1B) is a transcriptional repressor that plays critical roles in the control of erythropoiesis and megakaryopoiesis. Gfi-1B expression was described to be repressed by an autoregulatory feedback control loop. Here, we show that Gfi-1 transcription is positively regulated early after induction of erythroid differentiation and remains highly active to late erythroblasts. Using chromatin immunoprecipitation assays in CD34 + cells from human cord blood, we found that Gfi-1 and GATA-2 in immature progenitors and then Gfi-1B and GATA-1 in erythroblasts are bound to the Gfi-1B promoter as well as to the promoter of c-myc, a known Gfi-1B target gene. Surprisingly, this Gfi-1/GATA-2-Gfi-1B/GATA-1 switch observed at erythroblast stages is associated to an increase in the Gfi-1B transcription whereas it triggers repression of c-myc transcription. Accordingly, analysis of chromatin modification patterns shows that HDAC, CoREST, and LSD1 are recruited to the c-myc promoter leading to appearance of repressive chromatin marks. In contrast, the Gfi-1B promoter remains associated with a transcriptionally active chromatin configuration as highlighted by an increase in histone H3 acetylation and concomitant release of the LSD1 and CoREST corepressors. The repressive function of Gfi-1B therefore depends on the nature of the proteins recruited to the target gene promoters and on chromatin modifications. We conclude that Gfi-1B behaves as a lineage-affiliated gene with an open chromatin configuration in multipotent progenitors and sustained activation as cells progress throughout erythroid differentiation.
AB - Growth Factor Independent-1B (Gfi-1B) is a transcriptional repressor that plays critical roles in the control of erythropoiesis and megakaryopoiesis. Gfi-1B expression was described to be repressed by an autoregulatory feedback control loop. Here, we show that Gfi-1 transcription is positively regulated early after induction of erythroid differentiation and remains highly active to late erythroblasts. Using chromatin immunoprecipitation assays in CD34 + cells from human cord blood, we found that Gfi-1 and GATA-2 in immature progenitors and then Gfi-1B and GATA-1 in erythroblasts are bound to the Gfi-1B promoter as well as to the promoter of c-myc, a known Gfi-1B target gene. Surprisingly, this Gfi-1/GATA-2-Gfi-1B/GATA-1 switch observed at erythroblast stages is associated to an increase in the Gfi-1B transcription whereas it triggers repression of c-myc transcription. Accordingly, analysis of chromatin modification patterns shows that HDAC, CoREST, and LSD1 are recruited to the c-myc promoter leading to appearance of repressive chromatin marks. In contrast, the Gfi-1B promoter remains associated with a transcriptionally active chromatin configuration as highlighted by an increase in histone H3 acetylation and concomitant release of the LSD1 and CoREST corepressors. The repressive function of Gfi-1B therefore depends on the nature of the proteins recruited to the target gene promoters and on chromatin modifications. We conclude that Gfi-1B behaves as a lineage-affiliated gene with an open chromatin configuration in multipotent progenitors and sustained activation as cells progress throughout erythroid differentiation.
KW - Epigenetic processes
KW - Erythroid differentiation
KW - Hematopoietic stem cells
KW - Regulation of gene expression
UR - http://www.scopus.com/inward/record.url?scp=70349850505&partnerID=8YFLogxK
U2 - 10.1002/stem.151
DO - 10.1002/stem.151
M3 - Article
C2 - 19522008
AN - SCOPUS:70349850505
SN - 1066-5099
VL - 27
SP - 2153
EP - 2162
JO - Stem Cells
JF - Stem Cells
IS - 9
ER -