TY - JOUR
T1 - Human foetal ovary shares meiotic preventing factors with the developing testis
AU - Frydman, Nelly
AU - Poulain, Marine
AU - Arkoun, Brahim
AU - Duquenne, Clotilde
AU - Tourpin, Sophie
AU - Messiaen, Sébastien
AU - Habert, René
AU - Rouiller-Fabre, Virginie
AU - Benachi, Alexandra
AU - Livera, Gabriel
N1 - Publisher Copyright:
© The Author 2017. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - STUDY QUESTION: How can pre-meiotic germ cells persist in the human foetal ovary? SUMMARY ANSWER: Numerous oogonia escaping meiotic entry were retrieved throughout human ovarian development simultaneously with the expression of signalling pathways preventing meiosis, typically described in the rodent embryonic testis. WHAT IS KNOWN ALREADY: The transition from mitosis to meiosis is a key event in female germ cells that remains poorly documented in research on the human ovary. Previous reports described a strikingly asynchronous differentiation in the human female germ line during development, with the persistence of oogonia among oocytes and follicles during the second and third trimesters. The possible mechanisms allowing some cells to escape meiosis remain elusive. STUDY DESIGN SIZE, DURATION: In order to document the extent of this phenomenon, we detailed the expression profile of germ cell differentiation markers using 73 ovaries ranging from 6.4 to 35 weeks post-fertilization. PARTICIPANTS/MATERIALS SETTING, METHODS: Pre-meiotic markers were detected by immunohistochemistry or qRT-PCR. The expression of the main meiosis-preventing factors identified in mice was analysed, and their functionality assessed using organ cultures. MAIN RESULTS AND THE ROLE OF CHANCE: Oogonia stained for AP2γ could be traced from the first trimester until the end of the third trimester. Female germ cell differentiation is organized both in time and space in a centripetal manner in the foetal human ovary. Unexpectedly, some features usually ascribed to rodent pre-spermatogonia could be observed in human foetal ovaries, such as NANOS2 expression and quiescence in some germ cells. The two main somatic signals known to inhibit meiosis in the mouse embryonic testis, CYP26B1 and FGF9, were detected in the human ovary and act simultaneously to repress STRA8 and meiosis in human foetal female germ cells. LARGE SCALE DATA: N/A. LIMITATIONS REASON FOR CAUTION: Our conclusions relied partly on in vitro experiments. Germ cells were not systematically identified with immunostaining and some may have thus escaped analysis. WIDER IMPLICATIONS OF THE FINDINGS: We found evidence that a robust repression of meiotic entry is taking place in the human foetal ovary, possibly explaining the exceptional long-lasting presence of pre-meiotic germ cells until late gestational age. This result calls for a redefinition of the markers known as classical male markers, which may in fact characterize mammalian developing gonads irrespectively of their sex.
AB - STUDY QUESTION: How can pre-meiotic germ cells persist in the human foetal ovary? SUMMARY ANSWER: Numerous oogonia escaping meiotic entry were retrieved throughout human ovarian development simultaneously with the expression of signalling pathways preventing meiosis, typically described in the rodent embryonic testis. WHAT IS KNOWN ALREADY: The transition from mitosis to meiosis is a key event in female germ cells that remains poorly documented in research on the human ovary. Previous reports described a strikingly asynchronous differentiation in the human female germ line during development, with the persistence of oogonia among oocytes and follicles during the second and third trimesters. The possible mechanisms allowing some cells to escape meiosis remain elusive. STUDY DESIGN SIZE, DURATION: In order to document the extent of this phenomenon, we detailed the expression profile of germ cell differentiation markers using 73 ovaries ranging from 6.4 to 35 weeks post-fertilization. PARTICIPANTS/MATERIALS SETTING, METHODS: Pre-meiotic markers were detected by immunohistochemistry or qRT-PCR. The expression of the main meiosis-preventing factors identified in mice was analysed, and their functionality assessed using organ cultures. MAIN RESULTS AND THE ROLE OF CHANCE: Oogonia stained for AP2γ could be traced from the first trimester until the end of the third trimester. Female germ cell differentiation is organized both in time and space in a centripetal manner in the foetal human ovary. Unexpectedly, some features usually ascribed to rodent pre-spermatogonia could be observed in human foetal ovaries, such as NANOS2 expression and quiescence in some germ cells. The two main somatic signals known to inhibit meiosis in the mouse embryonic testis, CYP26B1 and FGF9, were detected in the human ovary and act simultaneously to repress STRA8 and meiosis in human foetal female germ cells. LARGE SCALE DATA: N/A. LIMITATIONS REASON FOR CAUTION: Our conclusions relied partly on in vitro experiments. Germ cells were not systematically identified with immunostaining and some may have thus escaped analysis. WIDER IMPLICATIONS OF THE FINDINGS: We found evidence that a robust repression of meiotic entry is taking place in the human foetal ovary, possibly explaining the exceptional long-lasting presence of pre-meiotic germ cells until late gestational age. This result calls for a redefinition of the markers known as classical male markers, which may in fact characterize mammalian developing gonads irrespectively of their sex.
KW - AP2γ
KW - CYP26B1
KW - FGF9
KW - Gonad differentiation
KW - Human foetal ovary
KW - Meiosis
KW - Oogonia
UR - http://www.scopus.com/inward/record.url?scp=85019812571&partnerID=8YFLogxK
U2 - 10.1093/humrep/dew343
DO - 10.1093/humrep/dew343
M3 - Article
C2 - 28073973
AN - SCOPUS:85019812571
SN - 0268-1161
VL - 32
SP - 631
EP - 642
JO - Human Reproduction
JF - Human Reproduction
IS - 3
ER -