I'll take that to go: Big data bags and minimal identifiers for exchange of large, complex datasets

Kyle Chard, Mike D'Arcy, Ben Heavner, Ian Foster, Carl Kesselman, Ravi Madduri, Alexis Rodriguez, Stian Soiland-Reyes, Carole Goble, Kristi Clark, Eric W. Deutsch, Ivo Dinov, Nathan Price, Arthur Toga

Résultats de recherche: Le chapitre dans un livre, un rapport, une anthologie ou une collection!!Conference contributionRevue par des pairs

35 Citations (Scopus)

Résumé

Big data workflows often require the assembly and exchange of complex, multi-element datasets. For example, in biomedical applications, the input to an analytic pipeline can be a dataset consisting thousands of images and genome sequences assembled from diverse repositories, requiring a description of the contents of the dataset in a concise and unambiguous form. Typical approaches to creating datasets for big data workflows assume that all data reside in a single location, requiring costly data marshaling and permitting errors of omission and commission because dataset members are not explicitly specified. We address these issues by proposing simple methods and tools for assembling, sharing, and analyzing large and complex datasets that scientists can easily integrate into their daily workflows. These tools combine a simple and robust method for describing data collections (BDBags), data descriptions (Research Objects), and simple persistent identifiers (Minids) to create a powerful ecosystem of tools and services for big data analysis and sharing. We present these tools and use biomedical case studies to illustrate their use for the rapid assembly, sharing, and analysis of large datasets.

langue originaleAnglais
titreProceedings - 2016 IEEE International Conference on Big Data, Big Data 2016
rédacteurs en chefRonay Ak, George Karypis, Yinglong Xia, Xiaohua Tony Hu, Philip S. Yu, James Joshi, Lyle Ungar, Ling Liu, Aki-Hiro Sato, Toyotaro Suzumura, Sudarsan Rachuri, Rama Govindaraju, Weijia Xu
EditeurInstitute of Electrical and Electronics Engineers Inc.
Pages319-328
Nombre de pages10
ISBN (Electronique)9781467390040
Les DOIs
étatPublié - 1 janv. 2016
Modification externeOui
Evénement4th IEEE International Conference on Big Data, Big Data 2016 - Washington, États-Unis
Durée: 5 déc. 20168 déc. 2016

Série de publications

NomProceedings - 2016 IEEE International Conference on Big Data, Big Data 2016

Une conférence

Une conférence4th IEEE International Conference on Big Data, Big Data 2016
Pays/TerritoireÉtats-Unis
La villeWashington
période5/12/168/12/16

Contient cette citation