TY - JOUR
T1 - Impact of systematic EGFR and KRAS mutation evaluation on progression-free survival and overall survival in patients with advanced non-small-cell lung cancer treated by erlotinib in a French prospective cohort (ERMETIC project-Part 2)
AU - Cadranel, Jacques
AU - Mauguen, Audrey
AU - Faller, Michele
AU - Zalcman, Gérard
AU - Buisine, Marie Pierre
AU - Westeel, Virginie
AU - Longchampt, Elisabeth
AU - Wislez, Marie
AU - Coudert, Bruno
AU - Daniel, Catherine
AU - Chetaille, Bruno
AU - Michiels, Stephane
AU - Blons, Helene
AU - Solassol, Jerome
AU - De Fraipont, Florence
AU - Foucher, Pascal
AU - Urban, Thierry
AU - Lacroix, Ludovic
AU - Poulot, Virginie
AU - Quoix, Elisabeth
AU - Antoine, Martine
AU - Danton, Guillaume
AU - Morin, Franck
AU - Chouaid, Christos
AU - Pignon, Jean Pierre
N1 - Funding Information:
The ERMETIC study was funded by the French Ministry of Health via the French National Institute for Cancer.
Funding Information:
Disclosure: J. Cadranel and G. Zalcman have received fees for speaking and consulting from Astra-Zeneca and Roche; travel to the ASCO and International Association for the Study on Lung Cancer congresses was funded by Astra-Zeneca and Roche. The remaining authors have no conflicts of interest to declare.
PY - 2012/1/1
Y1 - 2012/1/1
N2 - Background: Epidermal growth factor and v-Ki-ras2 Kirsten ras sarcoma (KRAS) mutation status, although associated with EGFR- tyrosine kinase inhibitor (TKI) efficacy, has not been used in clinical practice until recently. The prospective Evaluation of the EGFR Mutation status for the administration of EGFR-TKIs in non small cell lung Carcinoma (ERMETIC) study aimed to implement these biomarkers in France. Methods: Between March 2007 and April 2008, EGFR and KRAS were studied by sequencing DNA tumor specimens from 522 consecutive advanced non-small-cell lung cancer patients treated with EGFR-TKI, mostly in second- or third-line settings. Cox models were used to investigate the impact of patient characteristics and mutations on progression-free survival (PFS) and overall survival (OS). Added value from mutation status was evaluated using likelihood ratio (LR) tests. Classification and regression tree analysis aimed to identify homogeneous groups in terms of survival. Results: Among the 522 patients, 87% were white, 32% were women, and 18% were never-smokers, with 65% presenting with adenocarcinoma. Biological data were available for 307 patients, showing 44 EGFR mutations (14%) and 42 KRAS (14%) mutations. Median PFS was 2.4 months (interquartile range, 1.4-4.6) and median OS 5.6 months (interquartile range, 2.2-14.0). Factors independently associated with PFS were performance status 1 or 2 to 3 (hazards ratio [HR] = 1.5, 95% confidence interval [CI] 1.1-1.9; and HR = 2.3, CI 1.7-3.1, respectively; p < 0.001); former or current smoker status (HR = 1.8, CI 1.4-2.4 and 2.0,CI 1.4-2.8, respectively; p < 0.001); nonadenocarcinoma histology (squamous cell: HR = 0.9 CI 0.7-1.2]; others: HR = 1.6, 1.3-2.1; p < 0.001); at least two metastatic sites (HR = 1.3, CI 1.1-1.6 and 1.6, CI 1.3-2.1, respectively; p < 0.001); prior taxane-based chemotherapy (HR = 1.3, CI 1.0-1.3, p = 0.01); non-white (HR = 0.7, CI 0.5-0.9, p = 0.009). Similar results were found for OS. In addition, EGFR and KRAS mutations were significantly associated with PFS (HR = 0.5, CI 0.3-0.7 and HR = 1.2, CI 0.8-1.8, respectively, versus no mutation; LR p = 0.001). In the OS model, adjusted HR was 0.7 (0.4-1.0) for EGFR mutation and 1.7 (1.1-2.4) for KRAS (LR p = 0.004). Classification and regression tree analysis revealed EGFR mutation to be the primary factor for identifying homogeneous patient subgroups in terms of PFS. Conclusions: EGFR and KRAS status independently impacts outcomes in advanced non-small-cell lung cancer patients treated with EGFR-TKI. However, EGFR status impacts both PFS and OS whereas KRAS only impacts OS. These findings support the nationwide use of EGFR status for patient selection before EGFR-TKI therapy. The role of KRAS mutations remains to be elucidated.
AB - Background: Epidermal growth factor and v-Ki-ras2 Kirsten ras sarcoma (KRAS) mutation status, although associated with EGFR- tyrosine kinase inhibitor (TKI) efficacy, has not been used in clinical practice until recently. The prospective Evaluation of the EGFR Mutation status for the administration of EGFR-TKIs in non small cell lung Carcinoma (ERMETIC) study aimed to implement these biomarkers in France. Methods: Between March 2007 and April 2008, EGFR and KRAS were studied by sequencing DNA tumor specimens from 522 consecutive advanced non-small-cell lung cancer patients treated with EGFR-TKI, mostly in second- or third-line settings. Cox models were used to investigate the impact of patient characteristics and mutations on progression-free survival (PFS) and overall survival (OS). Added value from mutation status was evaluated using likelihood ratio (LR) tests. Classification and regression tree analysis aimed to identify homogeneous groups in terms of survival. Results: Among the 522 patients, 87% were white, 32% were women, and 18% were never-smokers, with 65% presenting with adenocarcinoma. Biological data were available for 307 patients, showing 44 EGFR mutations (14%) and 42 KRAS (14%) mutations. Median PFS was 2.4 months (interquartile range, 1.4-4.6) and median OS 5.6 months (interquartile range, 2.2-14.0). Factors independently associated with PFS were performance status 1 or 2 to 3 (hazards ratio [HR] = 1.5, 95% confidence interval [CI] 1.1-1.9; and HR = 2.3, CI 1.7-3.1, respectively; p < 0.001); former or current smoker status (HR = 1.8, CI 1.4-2.4 and 2.0,CI 1.4-2.8, respectively; p < 0.001); nonadenocarcinoma histology (squamous cell: HR = 0.9 CI 0.7-1.2]; others: HR = 1.6, 1.3-2.1; p < 0.001); at least two metastatic sites (HR = 1.3, CI 1.1-1.6 and 1.6, CI 1.3-2.1, respectively; p < 0.001); prior taxane-based chemotherapy (HR = 1.3, CI 1.0-1.3, p = 0.01); non-white (HR = 0.7, CI 0.5-0.9, p = 0.009). Similar results were found for OS. In addition, EGFR and KRAS mutations were significantly associated with PFS (HR = 0.5, CI 0.3-0.7 and HR = 1.2, CI 0.8-1.8, respectively, versus no mutation; LR p = 0.001). In the OS model, adjusted HR was 0.7 (0.4-1.0) for EGFR mutation and 1.7 (1.1-2.4) for KRAS (LR p = 0.004). Classification and regression tree analysis revealed EGFR mutation to be the primary factor for identifying homogeneous patient subgroups in terms of PFS. Conclusions: EGFR and KRAS status independently impacts outcomes in advanced non-small-cell lung cancer patients treated with EGFR-TKI. However, EGFR status impacts both PFS and OS whereas KRAS only impacts OS. These findings support the nationwide use of EGFR status for patient selection before EGFR-TKI therapy. The role of KRAS mutations remains to be elucidated.
KW - Epidermal growth factor mutation
KW - KRAS mutation
KW - Non-small cell lung cancer
KW - Prognostic factor
KW - Prospective cohort
KW - Tyrosine kinase inhibitor treatment
UR - http://www.scopus.com/inward/record.url?scp=84866600312&partnerID=8YFLogxK
U2 - 10.1097/JTO.0b013e318265b2b5
DO - 10.1097/JTO.0b013e318265b2b5
M3 - Article
C2 - 22982650
AN - SCOPUS:84866600312
SN - 1556-0864
VL - 7
SP - 1490
EP - 1502
JO - Journal of Thoracic Oncology
JF - Journal of Thoracic Oncology
IS - 10
ER -