Ionizing radiation biomarkers for potential use in epidemiological studies

Eileen Pernot, Janet Hall, Sarah Baatout, Mohammed Abderrafi Benotmane, Eric Blanchardon, Simon Bouffler, Houssein El Saghire, Maria Gomolka, Anne Guertler, Mats Harms-Ringdahl, Penny Jeggo, Michaela Kreuzer, Dominique Laurier, Carita Lindholm, Radhia Mkacher, Roel Quintens, Kai Rothkamm, Laure Sabatier, Soile Tapio, Florent de VathaireElisabeth Cardis

    Résultats de recherche: Contribution à un journalArticle 'review'Revue par des pairs

    182 Citations (Scopus)

    Résumé

    Ionizing radiation is a known human carcinogen that can induce a variety of biological effects depending on the physical nature, duration, doses and dose-rates of exposure. However, the magnitude of health risks at low doses and dose-rates (below 100mSv and/or 0.1mSvmin-1) remains controversial due to a lack of direct human evidence. It is anticipated that significant insights will emerge from the integration of epidemiological and biological research, made possible by molecular epidemiology studies incorporating biomarkers and bioassays. A number of these have been used to investigate exposure, effects and susceptibility to ionizing radiation, albeit often at higher doses and dose rates, with each reflecting time-limited cellular or physiological alterations. This review summarises the multidisciplinary work undertaken in the framework of the European project DoReMi (Low Dose Research towards Multidisciplinary Integration) to identify the most appropriate biomarkers for use in population studies. In addition to logistical and ethical considerations for conducting large-scale epidemiological studies, we discuss the relevance of their use for assessing the effects of low dose ionizing radiation exposure at the cellular and physiological level. We also propose a temporal classification of biomarkers that may be relevant for molecular epidemiology studies which need to take into account the time elapsed since exposure. Finally, the integration of biology with epidemiology requires careful planning and enhanced discussions between the epidemiology, biology and dosimetry communities in order to determine the most important questions to be addressed in light of pragmatic considerations including the appropriate population to be investigated (occupationally, environmentally or medically exposed), and study design. The consideration of the logistics of biological sample collection, processing and storing and the choice of biomarker or bioassay, as well as awareness of potential confounding factors, are also essential.

    langue originaleAnglais
    Pages (de - à)258-286
    Nombre de pages29
    journalMutation Research - Reviews in Mutation Research
    Volume751
    Numéro de publication2
    Les DOIs
    étatPublié - 1 oct. 2012

    Contient cette citation