Molecular heterogeneity in urothelial carcinoma and determinants of clinical benefit to PD-L1 blockade

Habib Hamidi, Yasin Senbabaoglu, Niha Beig, Juliette Roels, Cyrus Manuel, Xiangnan Guan, Hartmut Koeppen, Zoe June Assaf, Barzin Y. Nabet, Adrian Waddell, Kobe Yuen, Sophia Maund, Ethan Sokol, Jennifer M. Giltnane, Amber Schedlbauer, Eloisa Fuentes, James D. Cowan, Edward E. Kadel, Viraj Degaonkar, Alexander Andreev-DrakhlinPatrick Williams, Corey Carter, Suyasha Gupta, Elizabeth Steinberg, Yohann Loriot, Joaquim Bellmunt, Petros Grivas, Jonathan Rosenberg, Michiel S. van der Heijden, Matthew D. Galsky, Thomas Powles, Sanjeev Mariathasan, Romain Banchereau

    Résultats de recherche: Contribution à un journalArticleRevue par des pairs

    1 Citation (Scopus)

    Résumé

    Checkpoint inhibitors targeting programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) have revolutionized cancer therapy across many indications including urothelial carcinoma (UC). Because many patients do not benefit, a better understanding of the molecular mechanisms underlying response and resistance is needed to improve outcomes. We profiled tumors from 2,803 UC patients from four late-stage randomized clinical trials evaluating the PD-L1 inhibitor atezolizumab by RNA sequencing (RNA-seq), a targeted DNA panel, immunohistochemistry, and digital pathology. Machine learning identifies four transcriptional subtypes, representing luminal desert, stromal, immune, and basal tumors. Overall survival benefit from atezolizumab over standard-of-care is observed in immune and basal tumors, through different response mechanisms. A self-supervised digital pathology approach can classify molecular subtypes from H&E slides with high accuracy, which could accelerate tumor molecular profiling. This study represents a large integration of UC molecular and clinical data in randomized trials, paving the way for clinical studies tailoring treatment to specific molecular subtypes in UC and other indications.

    langue originaleAnglais
    Pages (de - à)2098-2112.e4
    journalCancer Cell
    Volume42
    Numéro de publication12
    Les DOIs
    étatPublié - 9 déc. 2024

    Contient cette citation