Résumé
Kinetic resistance plays a major role in the failure of chemotherapy towards many solid tumors. Kinetic resistance to cytotoxic drugs can be reproduced in vitro by growing the cells as multicellular spheroids (Multicellular Resistance) or as hyperconfluent cultures (Confluence-Dependent Resistance). Recent findings on the cell cycle regulation have permitted a better understanding why cancer cells which arrest in long quiescent phases are poorly sensitive to cell-cycle specific anticancer drugs. Two cyclin-dependent kinase inhibitors (CDKI)seem particularly involved in the cell cycle arrest at the G1 to S transition checkpoint: the p53-dependent p21(cip1) protein which is activated by DNA damage and the p27(kip1) which is a mediator of the contact inhibition signal Cell quiescence could alter drug-induced apoptosis which is partly dependent on an active progression in the cell cycle and which is facilitated by overexpression of oncogenes such as c-Myc or cyclins. Investigations are yet necessary to determine the influence of the cell cycle on the balance between antagonizing (bcl-2, bcl-X(L)...) or stimulating (Bax, Bcl-X(s), Fas...) factors in chemotherapy-induced apoptosis. Quiescent cells could also be protected from toxic agents by an enhanced expression of stress proteins, such as HSP27 which is induced by confluence. New strategies are required to circumvent kinetic resistance of solid tumors: adequate choice of anticancer agents whose activity is not altered by quiescence (radiation, cisplatin), recruitment from G 1 to S/G2 phases by cell pretreatment with alkylating drugs or attenuation of CDKI activity by specific inhibitors.
langue originale | Anglais |
---|---|
Pages (de - à) | 225-235 |
Nombre de pages | 11 |
journal | Cytotechnology |
Volume | 27 |
Numéro de publication | 1-3 |
Les DOIs | |
état | Publié - 1 janv. 1998 |