TY - JOUR
T1 - Novel inducers of BECN1-independent autophagy
T2 - Cis-unsaturated fatty acids
AU - Niso-Santano, Mireia
AU - Pedro, José Manuel Bravo San
AU - Maiuri, Maria Chiara
AU - Tavernarakis, Nektarios
AU - Cecconi, Francesco
AU - Madeo, Frank
AU - Codogno, Patrice
AU - Galluzzi, Lorenzo
AU - Kroemer, Guido
N1 - Publisher Copyright:
© 2015, Taylor & Francis Group, LLC.
PY - 2015/1/1
Y1 - 2015/1/1
N2 - The induction of autophagy usually requires the activation of PIK3C3/ VPS34 (phosphatidylinositol 3-kinase, catalytic subunit type 3) within a multiprotein complex that contains BECN1 (Beclin 1, autophagy related). PIK3C3 catalyzes the conversion of phosphatidylinositol into phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns3P associates with growing phagophores, which recruit components of the autophagic machinery, including the lipidated form of MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3 b). Depletion of BECN1, PIK3C3 or some of their interactors suppresses the formation of MAP1LC3B+ phagophores or autophagosomes elicited by most physiological stimuli, including saturated fatty acids. We observed that cis-unsaturated fatty acids stimulate the generation of cytosolic puncta containing lipidated MAP1LC3B as well as the autophagic turnover of long-lived proteins in the absence of PtdIns3P accumulation. In line with this notion, cis-unsaturated fatty acids require neither BECN1 nor PIK3C3 to stimulate the autophagic flux. Such a BECN1-independent autophagic response is phylogenetically conserved, manifesting in yeast, nematodes, mice and human cells. Importantly, MAP1LC3B+ puncta elicited by cisunsaturated fatty acids colocalize with Golgi apparatus markers. Moreover, the structural and functional collapse of the Golgi apparatus induced by brefeldin A inhibits cis-unsaturated fatty acid-triggered autophagy. It is tempting to speculate that the well-established healthpromoting effects of cis-unsaturated fatty acids are linked to their unusual capacity to stimulate noncanonical, BECN1-independent autophagic responses.
AB - The induction of autophagy usually requires the activation of PIK3C3/ VPS34 (phosphatidylinositol 3-kinase, catalytic subunit type 3) within a multiprotein complex that contains BECN1 (Beclin 1, autophagy related). PIK3C3 catalyzes the conversion of phosphatidylinositol into phosphatidylinositol 3-phosphate (PtdIns3P). PtdIns3P associates with growing phagophores, which recruit components of the autophagic machinery, including the lipidated form of MAP1LC3B/LC3 (microtubule-associated protein 1 light chain 3 b). Depletion of BECN1, PIK3C3 or some of their interactors suppresses the formation of MAP1LC3B+ phagophores or autophagosomes elicited by most physiological stimuli, including saturated fatty acids. We observed that cis-unsaturated fatty acids stimulate the generation of cytosolic puncta containing lipidated MAP1LC3B as well as the autophagic turnover of long-lived proteins in the absence of PtdIns3P accumulation. In line with this notion, cis-unsaturated fatty acids require neither BECN1 nor PIK3C3 to stimulate the autophagic flux. Such a BECN1-independent autophagic response is phylogenetically conserved, manifesting in yeast, nematodes, mice and human cells. Importantly, MAP1LC3B+ puncta elicited by cisunsaturated fatty acids colocalize with Golgi apparatus markers. Moreover, the structural and functional collapse of the Golgi apparatus induced by brefeldin A inhibits cis-unsaturated fatty acid-triggered autophagy. It is tempting to speculate that the well-established healthpromoting effects of cis-unsaturated fatty acids are linked to their unusual capacity to stimulate noncanonical, BECN1-independent autophagic responses.
KW - Caenorhabditis elegans
KW - Noncanonical autophagy
KW - Oleate
KW - Palmitate
KW - Saccharomyces cerevisiae
KW - Stearate
UR - http://www.scopus.com/inward/record.url?scp=84939849422&partnerID=8YFLogxK
U2 - 10.1080/15548627.2015.1017222
DO - 10.1080/15548627.2015.1017222
M3 - Article
C2 - 25714112
AN - SCOPUS:84939849422
SN - 1554-8627
VL - 11
SP - 575
EP - 577
JO - Autophagy
JF - Autophagy
IS - 3
ER -