Photon-Counting CT Scan Phantom Study: Stability of Radiomics Features

Lama Dawi, Kodjodenis Amouzouga, Serge Muller, Cyril Nallet, Arnaud Dupont, Benoit Vielliard, Cedric Croisille, Aurelie Moussier, Gabriel Garcia, François Bidault, Remy Barbe, Salma Moalla, Thibaut Pierre, Corinne Balleyguier, Jules Dupont, Nathalie Lassau

    Résultats de recherche: Contribution à un journalArticleRevue par des pairs

    Résumé

    Background/Objectives: To evaluate and optimize the reconstruction parameters of images acquired with a photon-counting CT scanner to achieve a stable radiomics signal. Methods: Radiomics is a quantitative imaging biomarker correlated to survival in oncology patients. Implementing radiomics in clinical routine remains challenging due to the feature’s instability. Photon-counting CT scans use innovative technology directly converting photons into electrical signals resulting in higher-resolution images with reduced artifacts. This study used two organic phantoms: a natural wet sponge and a dry sausage. UHR images were acquired using a NAEOTOM Alpha photon-counting CT scan (Siemens) with a 0.4 mm slice thickness and 0.3 × 0.3 mm pixel size. Tube current and voltage were fixed at 112 mA and 120 KvP. A total of 24 reconstruction parameter sets were obtained by combining different values of kernel (Br), quantitative iterative reconstruction (QIR), spectral reconstruction (keV), and matrix size. Ten successive acquisitions were obtained on both phantoms. In total, 93 radiomic features were extracted on an ROI using the default parameters of Pyradiomic 3.0.1. Each feature’s stability was evaluated using the coefficient of variation (CV) within each parameter set. Results: Of the 24 reconstruction parameter sets, 5 were selected based on best image quality by seven radiologists and three radiology technologists. Radiomics features were considered stable on a set when CV was less than 15%. Feature stability was impacted by reconstruction parameters and the phantom used. The most stable combination included 90 and 65 stable features of the 93 tested on the sausage and sponge respectively. It was configured with Br36, QIR 4, 60 keV, and a 1024 × 1024 matrix size. Conclusions: Images obtained on photon-counting CT scans offer promising radiomic feature stability with optimal parameter configurations that could be applied in a clinical setting.

    langue originaleAnglais
    Numéro d'article649
    journalDiagnostics
    Volume15
    Numéro de publication6
    Les DOIs
    étatPublié - 1 mars 2025

    Contient cette citation