TY - JOUR
T1 - Poly(ethylene glycol)-coated hexadecylcyanoacrylate nanospheres display a combined effect for brain tumor targeting
AU - Brigger, Irène
AU - Morizet, Jackie
AU - Aubert, Geneviève
AU - Chacun, Hélène
AU - Terrier-Lacombe, Marie José
AU - Couvreur, Patrick
AU - Vassal, Gilles
PY - 2002/12/1
Y1 - 2002/12/1
N2 - The aim of the present study was to evaluate the tumor accumulation of radiolabeled long-circulating poly(ethylene glycol) (PEG)-coated hexadecylcyanoacrylate nanospheres and non-PEG-coated hexadecylcyanoacrylate nanospheres (used as control), after intravenous injection in Fischer rats bearing intracerebrally well established 9L gliosarcoma. Both types of nanospheres showed an accumulation with a retention effect in the 9L tumor. However, long-circulating nanospheres concentrated 3.1 times higher in the gliosarcoma, compared with non-PEG-coated nanospheres. The tumor-to-brain ratio of pegylated nanospheres was found to be 11, which was in accordance with the ratios reported for other carriers tested for brain tumor targeting such as long-circulating liposomes or labels for magnetic resonance imaging. In addition, a 4- to 8-fold higher accumulation of the PEG-coated carriers was observed in normal brain regions, when compared with control nanospheres. Using a simplified pharmacokinetic model, two different mechanisms were proposed to explain this higher concentration of PEG-coated nanospheres in a tumoral brain. 1) in the 9L tumor, the preferential accumulation of pegylated nanospheres was attributable to their slower plasma clearance, relative to control nanospheres. Diffusion/convection was the proposed mechanism for extravasation of the nanospheres in the 9L interstitium, across the altered blood-brain barrier. 2) In addition, PEG-coated nanospheres displayed an affinity with the brain endothelial cells (normal brain region), which may not be considered as the result of a simple diffusion/convection process. The exact underlying mechanism of such affinity deserves further investigation, since it was observed to be as important as specific interactions described for immunoliposomes with the blood-brain barrier.
AB - The aim of the present study was to evaluate the tumor accumulation of radiolabeled long-circulating poly(ethylene glycol) (PEG)-coated hexadecylcyanoacrylate nanospheres and non-PEG-coated hexadecylcyanoacrylate nanospheres (used as control), after intravenous injection in Fischer rats bearing intracerebrally well established 9L gliosarcoma. Both types of nanospheres showed an accumulation with a retention effect in the 9L tumor. However, long-circulating nanospheres concentrated 3.1 times higher in the gliosarcoma, compared with non-PEG-coated nanospheres. The tumor-to-brain ratio of pegylated nanospheres was found to be 11, which was in accordance with the ratios reported for other carriers tested for brain tumor targeting such as long-circulating liposomes or labels for magnetic resonance imaging. In addition, a 4- to 8-fold higher accumulation of the PEG-coated carriers was observed in normal brain regions, when compared with control nanospheres. Using a simplified pharmacokinetic model, two different mechanisms were proposed to explain this higher concentration of PEG-coated nanospheres in a tumoral brain. 1) in the 9L tumor, the preferential accumulation of pegylated nanospheres was attributable to their slower plasma clearance, relative to control nanospheres. Diffusion/convection was the proposed mechanism for extravasation of the nanospheres in the 9L interstitium, across the altered blood-brain barrier. 2) In addition, PEG-coated nanospheres displayed an affinity with the brain endothelial cells (normal brain region), which may not be considered as the result of a simple diffusion/convection process. The exact underlying mechanism of such affinity deserves further investigation, since it was observed to be as important as specific interactions described for immunoliposomes with the blood-brain barrier.
UR - http://www.scopus.com/inward/record.url?scp=0036896915&partnerID=8YFLogxK
U2 - 10.1124/jpet.102.039669
DO - 10.1124/jpet.102.039669
M3 - Article
C2 - 12438511
AN - SCOPUS:0036896915
SN - 0022-3565
VL - 303
SP - 928
EP - 936
JO - Journal of Pharmacology and Experimental Therapeutics
JF - Journal of Pharmacology and Experimental Therapeutics
IS - 3
ER -