TY - JOUR
T1 - Quantification and reduction of cross-vendor variation in multicenter DWI MR imaging
T2 - results of the Cancer Core Europe imaging task force
AU - for the CCE – Imaging Task Force
AU - Sedlaczek, Oliver Lukas
AU - Kleesiek, Jens
AU - Gallagher, Ferdia A.
AU - Murray, Jacob
AU - Prinz, Sebastian
AU - Perez-Lopez, Raquel
AU - Sala, Evia
AU - Caramella, Caroline
AU - Diffetock, Sebastian
AU - Lassau, Nathalie
AU - Priest, Andrew N.
AU - Suzuki, Chikako
AU - Vargas, Roberto
AU - Giandini, Tommaso
AU - Vaiani, Marta
AU - Messina, Antonella
AU - Blomqvist, Lennart K.
AU - Beets-Tan, Regina G.H.
AU - Oberrauch, Petra
AU - Schlemmer, Heinz Peter
AU - Bach, Michael
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12/1
Y1 - 2022/12/1
N2 - Objectives: In the Cancer Core Europe Consortium (CCE), standardized biomarkers are required for therapy monitoring oncologic multicenter clinical trials. Multiparametric functional MRI and particularly diffusion-weighted MRI offer evident advantages for noninvasive characterization of tumor viability compared to CT and RECIST. A quantification of the inter- and intraindividual variation occurring in this setting using different hardware is missing. In this study, the MRI protocol including DWI was standardized and the residual variability of measurement parameters quantified. Methods: Phantom and volunteer measurements (single-shot T2w and DW-EPI) were performed at the seven CCE sites using the MR hardware produced by three different vendors. Repeated measurements were performed at the sites and across the sites including a traveling volunteer, comparing qualitative and quantitative ROI-based results including an explorative radiomics analysis. Results: For DWI/ADC phantom measurements using a central post-processing algorithm, the maximum deviation could be decreased to 2%. However, there is no significant difference compared to a decentralized ADC value calculation at the respective MRI devices. In volunteers, the measurement variation in 2 repeated scans did not exceed 11% for ADC and is below 20% for single-shot T2w in systematic liver ROIs. The measurement variation between sites amounted to 20% for ADC and < 25% for single-shot T2w. Explorative radiomics classification experiments yield better results for ADC than for single-shot T2w. Conclusion: Harmonization of MR acquisition and post-processing parameters results in acceptable standard deviations for MR/DW imaging. MRI could be the tool in oncologic multicenter trials to overcome the limitations of RECIST-based response evaluation. Key Points: • Harmonizing acquisition parameters and post-processing homogenization, standardized protocols result in acceptable standard deviations for multicenter MR–DWI studies. • Total measurement variation does not to exceed 11% for ADC in repeated measurements in repeated MR acquisitions, and below 20% for an identical volunteer travelling between sites. • Radiomic classification experiments were able to identify stable features allowing for reliable discrimination of different physiological tissue samples, even when using heterogeneous imaging data.
AB - Objectives: In the Cancer Core Europe Consortium (CCE), standardized biomarkers are required for therapy monitoring oncologic multicenter clinical trials. Multiparametric functional MRI and particularly diffusion-weighted MRI offer evident advantages for noninvasive characterization of tumor viability compared to CT and RECIST. A quantification of the inter- and intraindividual variation occurring in this setting using different hardware is missing. In this study, the MRI protocol including DWI was standardized and the residual variability of measurement parameters quantified. Methods: Phantom and volunteer measurements (single-shot T2w and DW-EPI) were performed at the seven CCE sites using the MR hardware produced by three different vendors. Repeated measurements were performed at the sites and across the sites including a traveling volunteer, comparing qualitative and quantitative ROI-based results including an explorative radiomics analysis. Results: For DWI/ADC phantom measurements using a central post-processing algorithm, the maximum deviation could be decreased to 2%. However, there is no significant difference compared to a decentralized ADC value calculation at the respective MRI devices. In volunteers, the measurement variation in 2 repeated scans did not exceed 11% for ADC and is below 20% for single-shot T2w in systematic liver ROIs. The measurement variation between sites amounted to 20% for ADC and < 25% for single-shot T2w. Explorative radiomics classification experiments yield better results for ADC than for single-shot T2w. Conclusion: Harmonization of MR acquisition and post-processing parameters results in acceptable standard deviations for MR/DW imaging. MRI could be the tool in oncologic multicenter trials to overcome the limitations of RECIST-based response evaluation. Key Points: • Harmonizing acquisition parameters and post-processing homogenization, standardized protocols result in acceptable standard deviations for multicenter MR–DWI studies. • Total measurement variation does not to exceed 11% for ADC in repeated measurements in repeated MR acquisitions, and below 20% for an identical volunteer travelling between sites. • Radiomic classification experiments were able to identify stable features allowing for reliable discrimination of different physiological tissue samples, even when using heterogeneous imaging data.
KW - Diffusion-weighted MRI
KW - Magnetic resonance imaging
KW - Multicenter, oncologic studies, Measurement Variability
KW - Radiomics
UR - http://www.scopus.com/inward/record.url?scp=85131520408&partnerID=8YFLogxK
U2 - 10.1007/s00330-022-08880-7
DO - 10.1007/s00330-022-08880-7
M3 - Article
C2 - 35678860
AN - SCOPUS:85131520408
SN - 0938-7994
VL - 32
SP - 8617
EP - 8628
JO - European Radiology
JF - European Radiology
IS - 12
ER -