Résumé
Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia characterized by granulomatous lesions containing pathological CD207+ dendritic cells (DCs) with constitutively activated mitogen-activated protein kinase (MAPK) pathway signaling. Approximately 60% of LCH patients harbor somatic BRAFV600E mutations localizing to CD207+ DCs within lesions. However, the mechanisms driving BRAFV600E+ LCH cell accumulation in lesions remain unknown. Here we show that sustained extracellular signal-related kinase activity induced by BRAFV600E inhibits C-C motif chemokine receptor 7 (CCR7)-mediated DC migration, trapping DCs in tissue lesions. Additionally, BRAFV600E increases expression of BCL2-like protein 1 (BCL2L1) in DCs, resulting in resistance to apoptosis. Pharmacological MAPK inhibition restores migration and apoptosis potential in a mouse LCH model, as well as in primary human LCH cells. We also demonstrate that MEK inhibitor-loaded nanoparticles have the capacity to concentrate drug delivery to phagocytic cells, significantly reducing off-target toxicity. Collectively, our results indicate that MAPK tightly suppresses DC migration and augments DC survival, rendering DCs in LCH lesions trapped and resistant to cell death.
langue originale | Anglais |
---|---|
Pages (de - à) | 319-336 |
Nombre de pages | 18 |
journal | Journal of Experimental Medicine |
Volume | 215 |
Numéro de publication | 1 |
Les DOIs | |
état | Publié - 1 janv. 2018 |
Modification externe | Oui |
Accès au document
Autres fichiers et liens
Contient cette citation
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
Dans: Journal of Experimental Medicine, Vol 215, Numéro 1, 01.01.2018, p. 319-336.
Résultats de recherche: Contribution à un journal › Article › Revue par des pairs
TY - JOUR
T1 - RAF/MEK/extracellular signal-related kinase pathway suppresses dendritic cell migration and traps dendritic cells in Langerhans cell histiocytosis lesions
AU - Hogstad, Brandon
AU - Berres, Marie Luise
AU - Chakraborty, Rikhia
AU - Tang, Jun
AU - Bigenwald, Camille
AU - Serasinghe, Madhavika
AU - Lim, Karen Phaik Har
AU - Lin, Howard
AU - Man, Tsz Kwong
AU - Remark, Romain
AU - Baxter, Samantha
AU - Kana, Veronika
AU - Jordan, Stefan
AU - Karoulia, Zoi
AU - Kwan, Wing Hong
AU - Leboeuf, Marylene
AU - Brandt, Elisa
AU - Salmon, Helene
AU - McClain, Kenneth
AU - Poulikakos, Poulikos
AU - Chipuk, Jerry
AU - Mulder, Willem J.M.
AU - Allen, Carl E.
AU - Merad, Miriam
N1 - Funding Information: This study was supported in part by funding from the HistioCure Foundation (TXCH Histiocytosis Program). Research reported in this publication was supported by a grant from the National Heart, Lung, and Blood Institute of the National Institutes of Health (no. F31HL126484 to B. Hogstad). Support includes grants from the following institutions: National Institutes of Health (no. 2R01CA154947-06A1 to B. Hogstad and M. Merad), National Institutes of Health R01 (no. CA154489 to C.E. Allen, K. McClain, and T.-K. Man), National Institutes of Health SPORE in Lymphoma (no. P50CA126752 to C.E. Allen), National Institutes of Health R01 (nos. CA154947, AI10008, and AI089987 to M. Merad), the German Research Association (Deutsche Forschungsgemeinschaft, nos. BE 4818/1-1 and SFBTRR57 P07 to M.-L. Berres), the St Baldrick’s Foundation (North American Consortium for Histiocytosis to C.E. Allen, K. McClain, and M. Merad), the Alex’s Lemonade Stand Foundation Young Investigator Grant (to R. Chakraborty), the American Society of Hematology Scholar Award (to R. Chakraborty), and the Howard Hughes Medical Institute to the Baylor College of Medicine Med into Grad Initiative (to K.P.H. Lim). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We also appreciate the support of shared resources by a Dan L. Duncan Cancer Center support grant (no. P30CA125123). The authors declare no competing financial interests. Funding Information: This study was supported in part by funding from the HistioCure Foundation (TXCH Histiocytosis Program). Research reported in this publication was supported by a grant from the National Heart, Lung, and Blood Institute of the National Institutes of Health (no. F31HL126484 to B. Hogstad). Support includes grants from the following institutions: National Institutes of Health (no. 2R01CA154947-06A1 to B. Hogstad and M. Merad), National Institutes of Health R01 (no. CA154489 to C.E. Allen, K. McClain, and T.-K. Man), National Institutes of Health SPO RE in Lymphoma (no. P50CA126752 to C.E. Allen), National Institutes of Health R01 (nos. CA154947, AI10008, and AI089987 to M. Merad), the German Research Association (Deutsche Forschungsgemeinschaft, nos. BE 4818/1-1 and SFB TRR57 P07 to M.-L. Berres), the St Baldrick's Foundation (North American Consortium for Histiocytosis to C.E. Allen, K. McClain, and M. Merad), the Alex's Lemonade Stand Foundation Young Investigator Grant (to R. Chakraborty), the American Society of Hematology Scholar Award (to R. Chakraborty), and the Howard Hughes Medical Institute to the Baylor College of Medicine Med into Grad Initiative (to K.P.H. Lim). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We also appreciate the support of shared resources by a Dan L. Duncan Cancer Center support grant (no. P30CA125123).
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia characterized by granulomatous lesions containing pathological CD207+ dendritic cells (DCs) with constitutively activated mitogen-activated protein kinase (MAPK) pathway signaling. Approximately 60% of LCH patients harbor somatic BRAFV600E mutations localizing to CD207+ DCs within lesions. However, the mechanisms driving BRAFV600E+ LCH cell accumulation in lesions remain unknown. Here we show that sustained extracellular signal-related kinase activity induced by BRAFV600E inhibits C-C motif chemokine receptor 7 (CCR7)-mediated DC migration, trapping DCs in tissue lesions. Additionally, BRAFV600E increases expression of BCL2-like protein 1 (BCL2L1) in DCs, resulting in resistance to apoptosis. Pharmacological MAPK inhibition restores migration and apoptosis potential in a mouse LCH model, as well as in primary human LCH cells. We also demonstrate that MEK inhibitor-loaded nanoparticles have the capacity to concentrate drug delivery to phagocytic cells, significantly reducing off-target toxicity. Collectively, our results indicate that MAPK tightly suppresses DC migration and augments DC survival, rendering DCs in LCH lesions trapped and resistant to cell death.
AB - Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasia characterized by granulomatous lesions containing pathological CD207+ dendritic cells (DCs) with constitutively activated mitogen-activated protein kinase (MAPK) pathway signaling. Approximately 60% of LCH patients harbor somatic BRAFV600E mutations localizing to CD207+ DCs within lesions. However, the mechanisms driving BRAFV600E+ LCH cell accumulation in lesions remain unknown. Here we show that sustained extracellular signal-related kinase activity induced by BRAFV600E inhibits C-C motif chemokine receptor 7 (CCR7)-mediated DC migration, trapping DCs in tissue lesions. Additionally, BRAFV600E increases expression of BCL2-like protein 1 (BCL2L1) in DCs, resulting in resistance to apoptosis. Pharmacological MAPK inhibition restores migration and apoptosis potential in a mouse LCH model, as well as in primary human LCH cells. We also demonstrate that MEK inhibitor-loaded nanoparticles have the capacity to concentrate drug delivery to phagocytic cells, significantly reducing off-target toxicity. Collectively, our results indicate that MAPK tightly suppresses DC migration and augments DC survival, rendering DCs in LCH lesions trapped and resistant to cell death.
UR - http://www.scopus.com/inward/record.url?scp=85039948009&partnerID=8YFLogxK
U2 - 10.1084/jem.20161881
DO - 10.1084/jem.20161881
M3 - Article
C2 - 29263218
AN - SCOPUS:85039948009
SN - 0022-1007
VL - 215
SP - 319
EP - 336
JO - Journal of Experimental Medicine
JF - Journal of Experimental Medicine
IS - 1
ER -