TY - JOUR
T1 - RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors
AU - Oberholzer, Patrick A.
AU - Kee, Damien
AU - Dziunycz, Piotr
AU - Sucker, Antje
AU - Kamsukom, Nyam
AU - Jones, Robert
AU - Roden, Christine
AU - Chalk, Clinton J.
AU - Ardlie, Kristin
AU - Palescandolo, Emanuele
AU - Piris, Adriano
AU - MacConaill, Laura E.
AU - Robert, Caroline
AU - Hofbauer, Günther F.L.
AU - McArthur, Grant A.
AU - Schadendorf, Dirk
AU - Garraway, Levi A.
PY - 2012/1/20
Y1 - 2012/1/20
N2 - Purpose: RAF inhibitors are effective against melanomas with BRAF V600E mutations but may induce keratoacanthomas (KAs) and cutaneous squamous cell carcinomas (cSCCs). The potential of these agents to promote secondary malignancies is concerning. We analyzed cSCC and KA lesions for genetic mutations in an attempt to identify an underlying mechanism for their formation. Methods: Four international centers contributed 237 KA or cSCC tumor samples from patients receiving an RAF inhibitor (either vemurafenib or sorafenib; n = 19) or immunosuppression therapy (n = 53) or tumors that developed spontaneously (n = 165). Each sample was profiled for 396 known somatic mutations across 33 cancer-related genes by using a mass spectrometric-based genotyping platform. Results: Mutations were detected in 16% of tumors (38 of 237), with five tumors harboring two mutations. Mutations in TP53, CDKN2A, HRAS, KRAS, and PIK3CA were previously described in squamous cell tumors. Mutations in MYC, FGFR3, and VHL were identified for the first time. A higher frequency of activating RAS mutations was found in tumors from patients treated with an RAF inhibitor versus populations treated with a non-RAF inhibitor (21.1% v 3.2%; P < .01), although overall mutation rates between treatment groups were similar (RAF inhibitor, 21.1%; immunosuppression, 18.9%; and spontaneous, 17.6%; P = not significant). Tumor histology (KA v cSCC), tumor site (head and neck v other), patient age (≤ 70 v > 70 years), and sex had no significant impact on mutation rate or type. Conclusion: Squamous cell tumors from patients treated with an RAF inhibitor have a distinct mutational profile that supports a mechanism of therapy-induced tumorigenesis in RAS-primed cells. Conceivably, cotargeting of MEK together with RAF may reduce or prevent formation of these tumors.
AB - Purpose: RAF inhibitors are effective against melanomas with BRAF V600E mutations but may induce keratoacanthomas (KAs) and cutaneous squamous cell carcinomas (cSCCs). The potential of these agents to promote secondary malignancies is concerning. We analyzed cSCC and KA lesions for genetic mutations in an attempt to identify an underlying mechanism for their formation. Methods: Four international centers contributed 237 KA or cSCC tumor samples from patients receiving an RAF inhibitor (either vemurafenib or sorafenib; n = 19) or immunosuppression therapy (n = 53) or tumors that developed spontaneously (n = 165). Each sample was profiled for 396 known somatic mutations across 33 cancer-related genes by using a mass spectrometric-based genotyping platform. Results: Mutations were detected in 16% of tumors (38 of 237), with five tumors harboring two mutations. Mutations in TP53, CDKN2A, HRAS, KRAS, and PIK3CA were previously described in squamous cell tumors. Mutations in MYC, FGFR3, and VHL were identified for the first time. A higher frequency of activating RAS mutations was found in tumors from patients treated with an RAF inhibitor versus populations treated with a non-RAF inhibitor (21.1% v 3.2%; P < .01), although overall mutation rates between treatment groups were similar (RAF inhibitor, 21.1%; immunosuppression, 18.9%; and spontaneous, 17.6%; P = not significant). Tumor histology (KA v cSCC), tumor site (head and neck v other), patient age (≤ 70 v > 70 years), and sex had no significant impact on mutation rate or type. Conclusion: Squamous cell tumors from patients treated with an RAF inhibitor have a distinct mutational profile that supports a mechanism of therapy-induced tumorigenesis in RAS-primed cells. Conceivably, cotargeting of MEK together with RAF may reduce or prevent formation of these tumors.
UR - http://www.scopus.com/inward/record.url?scp=84862908526&partnerID=8YFLogxK
U2 - 10.1200/JCO.2011.36.7680
DO - 10.1200/JCO.2011.36.7680
M3 - Article
C2 - 22067401
AN - SCOPUS:84862908526
SN - 0732-183X
VL - 30
SP - 316
EP - 321
JO - Journal of Clinical Oncology
JF - Journal of Clinical Oncology
IS - 3
ER -