TY - GEN
T1 - Region-Guided CycleGANs for Stain Transfer in Whole Slide Images
AU - Boyd, Joseph
AU - Villa, Irène
AU - Mathieu, Marie Christine
AU - Deutsch, Eric
AU - Paragios, Nikos
AU - Vakalopoulou, Maria
AU - Christodoulidis, Stergios
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2022/1/1
Y1 - 2022/1/1
N2 - In whole slide imaging, commonly used staining techniques based on hematoxylin and eosin (H &E) and immunohistochemistry (IHC) stains accentuate different aspects of the tissue landscape. In the case of detecting metastases, IHC provides a distinct readout that is readily interpretable by pathologists. IHC, however, is a more expensive approach and not available at all medical centers. Virtually generating IHC images from H &E using deep neural networks thus becomes an attractive alternative. Deep generative models such as CycleGANs learn a semantically-consistent mapping between two image domains, while emulating the textural properties of each domain. They are therefore a suitable choice for stain transfer applications. However, they remain fully unsupervised, and possess no mechanism for enforcing biological consistency in stain transfer. In this paper, we propose an extension to CycleGANs in the form of a region of interest discriminator. This allows the CycleGAN to learn from unpaired datasets where, in addition, there is a partial annotation of objects for which one wishes to enforce consistency. We present a use case on whole slide images, where an IHC stain provides an experimentally generated signal for metastatic cells. We demonstrate the superiority of our approach over prior art in stain transfer on histopathology tiles over two datasets. Our code and model are available at https://github.com/jcboyd/miccai2022-roigan.
AB - In whole slide imaging, commonly used staining techniques based on hematoxylin and eosin (H &E) and immunohistochemistry (IHC) stains accentuate different aspects of the tissue landscape. In the case of detecting metastases, IHC provides a distinct readout that is readily interpretable by pathologists. IHC, however, is a more expensive approach and not available at all medical centers. Virtually generating IHC images from H &E using deep neural networks thus becomes an attractive alternative. Deep generative models such as CycleGANs learn a semantically-consistent mapping between two image domains, while emulating the textural properties of each domain. They are therefore a suitable choice for stain transfer applications. However, they remain fully unsupervised, and possess no mechanism for enforcing biological consistency in stain transfer. In this paper, we propose an extension to CycleGANs in the form of a region of interest discriminator. This allows the CycleGAN to learn from unpaired datasets where, in addition, there is a partial annotation of objects for which one wishes to enforce consistency. We present a use case on whole slide images, where an IHC stain provides an experimentally generated signal for metastatic cells. We demonstrate the superiority of our approach over prior art in stain transfer on histopathology tiles over two datasets. Our code and model are available at https://github.com/jcboyd/miccai2022-roigan.
KW - CycleGANs
KW - Region-based discriminator
KW - Stain transfer
UR - http://www.scopus.com/inward/record.url?scp=85139086381&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-16434-7_35
DO - 10.1007/978-3-031-16434-7_35
M3 - Conference contribution
AN - SCOPUS:85139086381
SN - 9783031164330
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 356
EP - 365
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
A2 - Wang, Linwei
A2 - Dou, Qi
A2 - Fletcher, P. Thomas
A2 - Speidel, Stefanie
A2 - Li, Shuo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Y2 - 18 September 2022 through 22 September 2022
ER -