Region-Guided CycleGANs for Stain Transfer in Whole Slide Images

Joseph Boyd, Irène Villa, Marie Christine Mathieu, Eric Deutsch, Nikos Paragios, Maria Vakalopoulou, Stergios Christodoulidis

    Résultats de recherche: Le chapitre dans un livre, un rapport, une anthologie ou une collection!!Conference contributionRevue par des pairs

    4 Citations (Scopus)

    Résumé

    In whole slide imaging, commonly used staining techniques based on hematoxylin and eosin (H &E) and immunohistochemistry (IHC) stains accentuate different aspects of the tissue landscape. In the case of detecting metastases, IHC provides a distinct readout that is readily interpretable by pathologists. IHC, however, is a more expensive approach and not available at all medical centers. Virtually generating IHC images from H &E using deep neural networks thus becomes an attractive alternative. Deep generative models such as CycleGANs learn a semantically-consistent mapping between two image domains, while emulating the textural properties of each domain. They are therefore a suitable choice for stain transfer applications. However, they remain fully unsupervised, and possess no mechanism for enforcing biological consistency in stain transfer. In this paper, we propose an extension to CycleGANs in the form of a region of interest discriminator. This allows the CycleGAN to learn from unpaired datasets where, in addition, there is a partial annotation of objects for which one wishes to enforce consistency. We present a use case on whole slide images, where an IHC stain provides an experimentally generated signal for metastatic cells. We demonstrate the superiority of our approach over prior art in stain transfer on histopathology tiles over two datasets. Our code and model are available at https://github.com/jcboyd/miccai2022-roigan.

    langue originaleAnglais
    titreMedical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
    rédacteurs en chefLinwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li
    EditeurSpringer Science and Business Media Deutschland GmbH
    Pages356-365
    Nombre de pages10
    ISBN (imprimé)9783031164330
    Les DOIs
    étatPublié - 1 janv. 2022
    Evénement25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapour
    Durée: 18 sept. 202222 sept. 2022

    Série de publications

    NomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume13432 LNCS
    ISSN (imprimé)0302-9743
    ISSN (Electronique)1611-3349

    Une conférence

    Une conférence25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
    Pays/TerritoireSingapour
    La villeSingapore
    période18/09/2222/09/22

    Contient cette citation