TY - JOUR
T1 - Resveratrol, a phytochemical inducer of multiple cell death pathways
T2 - Apoptosis, autophagy and mitotic catastrophe
AU - Delmas, D.
AU - Solary, E.
AU - Latruffe, N.
PY - 2011/3/1
Y1 - 2011/3/1
N2 - Cancers are the largest cause of mortality and morbidity in industrialized countries. In the field of the medicinal chemistry of natural products, numerous studies have reported interesting properties of trans-resveratrol as a chemopreventing agent against cancers, inflammation, and viral infection. Tumor growth inhibition has been linked to the ability of resveratrol to arrest cell cycle progression and to trigger cell death. This review focuses on the pathways that mediate resveratrol-induced cell death. Resveratrol impacts on the mitochondrial functions (respiratory chain, oncoproteins, gene expression, etc), in which p53 protein can be involved and its acetylated or phosphorylated forms. This polyphenol also affects death receptor distribution in ceramide-enriched membrane platforms which serve to trap and cluster receptor molecules, and facilitates the formation of a death-inducing signaling complex in the cell. To induce apoptosis, resveratrol also activates the ceramide / sphingomyelin pathway, which promotes ceramide generation and the downstream activation of kinase cascades. Resveratrol can activate alternative pathways to cell death such as those leading to autophagy, senescence or mitotic catastrophe. Furthermore, numerous attempts have been made using resveratrol analogs to improve the molecule's ability to block cell proliferation and induce cell death. Moreover, structural modification of natural phenolics is expected to produce analogs that may be useful tools to study the structure-activity relationships. Lastly, in various cancer types, resveratrol behaves as a chemosensitizer that lowers the threshold of cell death induction by classical anticancer agents and counteracts tumor cell chemoresistance.
AB - Cancers are the largest cause of mortality and morbidity in industrialized countries. In the field of the medicinal chemistry of natural products, numerous studies have reported interesting properties of trans-resveratrol as a chemopreventing agent against cancers, inflammation, and viral infection. Tumor growth inhibition has been linked to the ability of resveratrol to arrest cell cycle progression and to trigger cell death. This review focuses on the pathways that mediate resveratrol-induced cell death. Resveratrol impacts on the mitochondrial functions (respiratory chain, oncoproteins, gene expression, etc), in which p53 protein can be involved and its acetylated or phosphorylated forms. This polyphenol also affects death receptor distribution in ceramide-enriched membrane platforms which serve to trap and cluster receptor molecules, and facilitates the formation of a death-inducing signaling complex in the cell. To induce apoptosis, resveratrol also activates the ceramide / sphingomyelin pathway, which promotes ceramide generation and the downstream activation of kinase cascades. Resveratrol can activate alternative pathways to cell death such as those leading to autophagy, senescence or mitotic catastrophe. Furthermore, numerous attempts have been made using resveratrol analogs to improve the molecule's ability to block cell proliferation and induce cell death. Moreover, structural modification of natural phenolics is expected to produce analogs that may be useful tools to study the structure-activity relationships. Lastly, in various cancer types, resveratrol behaves as a chemosensitizer that lowers the threshold of cell death induction by classical anticancer agents and counteracts tumor cell chemoresistance.
KW - Apoptosis
KW - Cancer
KW - Chemosensitization
KW - Lipid rafts
KW - Phagocytosis
KW - Resveratrol
UR - http://www.scopus.com/inward/record.url?scp=79952801721&partnerID=8YFLogxK
U2 - 10.2174/092986711795029708
DO - 10.2174/092986711795029708
M3 - Article
C2 - 21291372
AN - SCOPUS:79952801721
SN - 0929-8673
VL - 18
SP - 1100
EP - 1121
JO - Current Medicinal Chemistry
JF - Current Medicinal Chemistry
IS - 8
ER -