Self-supervised Nuclei Segmentation in Histopathological Images Using Attention

Mihir Sahasrabudhe, Stergios Christodoulidis, Roberto Salgado, Stefan Michiels, Sherene Loi, Fabrice André, Nikos Paragios, Maria Vakalopoulou

    Résultats de recherche: Le chapitre dans un livre, un rapport, une anthologie ou une collection!!Conference contributionRevue par des pairs

    40 Citations (Scopus)

    Résumé

    Segmentation and accurate localization of nuclei in histopathological images is a very challenging problem, with most existing approaches adopting a supervised strategy. These methods usually rely on manual annotations that require a lot of time and effort from medical experts. In this study, we present a self-supervised approach for segmentation of nuclei for whole slide histopathology images. Our method works on the assumption that the size and texture of nuclei can determine the magnification at which a patch is extracted. We show that the identification of the magnification level for tiles can generate a preliminary self-supervision signal to locate nuclei. We further show that by appropriately constraining our model it is possible to retrieve meaningful segmentation maps as an auxiliary output to the primary magnification identification task. Our experiments show that with standard post-processing, our method can outperform other unsupervised nuclei segmentation approaches and report similar performance with supervised ones on the publicly available MoNuSeg dataset. Our code and models are available online (https://github.com/msahasrabudhe/miccai2020_self_sup_nuclei_seg) to facilitate further research.

    langue originaleAnglais
    titreMedical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
    rédacteurs en chefAnne L. Martel, Purang Abolmaesumi, Danail Stoyanov, Diana Mateus, Maria A. Zuluaga, S. Kevin Zhou, Daniel Racoceanu, Leo Joskowicz
    EditeurSpringer Science and Business Media Deutschland GmbH
    Pages393-402
    Nombre de pages10
    ISBN (imprimé)9783030597214
    Les DOIs
    étatPublié - 1 janv. 2020
    Evénement23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020 - Lima, Pérou
    Durée: 4 oct. 20208 oct. 2020

    Série de publications

    NomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume12265 LNCS
    ISSN (imprimé)0302-9743
    ISSN (Electronique)1611-3349

    Une conférence

    Une conférence23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
    Pays/TerritoirePérou
    La villeLima
    période4/10/208/10/20

    Contient cette citation