TY - GEN
T1 - Self-Supervised Representation Learning using Visual Field Expansion on Digital Pathology
AU - Boyd, Joseph
AU - Liashuha, Mykola
AU - Deutsch, Eric
AU - Paragios, Nikos
AU - Christodoulidis, Stergios
AU - Vakalopoulou, Maria
N1 - Publisher Copyright:
© 2021 IEEE.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - The examination of histopathology images is considered to be the gold standard for the diagnosis and stratification of cancer patients. A key challenge in the analysis of such images is their size, which can run into the gigapixels and can require tedious screening by clinicians. With the recent advances in computational medicine, automatic tools have been proposed to assist clinicians in their everyday practice. Such tools typically process these large images by slicing them into tiles that can then be encoded and utilized for different clinical models. In this study, we propose a novel generative framework that can learn powerful representations for such tiles by learning to plausibly expand their visual field. In particular, we developed a progressively grown generative model with the objective of visual field expansion. Thus trained, our model learns to generate different tissue types with fine details, while simultaneously learning powerful representations that can be used for different clinical endpoints, all in a self-supervised way. To evaluate the performance of our model, we conducted classification experiments on CAMELYON17 and CRC benchmark datasets, comparing favorably to other self-supervised and pre-trained strategies that are commonly used in digital pathology. Our code is available at https://github.com/jcboyd/cdpath21-gan.
AB - The examination of histopathology images is considered to be the gold standard for the diagnosis and stratification of cancer patients. A key challenge in the analysis of such images is their size, which can run into the gigapixels and can require tedious screening by clinicians. With the recent advances in computational medicine, automatic tools have been proposed to assist clinicians in their everyday practice. Such tools typically process these large images by slicing them into tiles that can then be encoded and utilized for different clinical models. In this study, we propose a novel generative framework that can learn powerful representations for such tiles by learning to plausibly expand their visual field. In particular, we developed a progressively grown generative model with the objective of visual field expansion. Thus trained, our model learns to generate different tissue types with fine details, while simultaneously learning powerful representations that can be used for different clinical endpoints, all in a self-supervised way. To evaluate the performance of our model, we conducted classification experiments on CAMELYON17 and CRC benchmark datasets, comparing favorably to other self-supervised and pre-trained strategies that are commonly used in digital pathology. Our code is available at https://github.com/jcboyd/cdpath21-gan.
UR - http://www.scopus.com/inward/record.url?scp=85123048136&partnerID=8YFLogxK
U2 - 10.1109/ICCVW54120.2021.00077
DO - 10.1109/ICCVW54120.2021.00077
M3 - Conference contribution
AN - SCOPUS:85123048136
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 639
EP - 647
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE/CVF International Conference on Computer Vision Workshops, ICCVW 2021
Y2 - 11 October 2021 through 17 October 2021
ER -