Shifting the balance of activating and inhibitory natural killer receptor ligands on BRAFV600E melanoma lines with vemurafenib

Alexandra Frazao, Marina Colombo, Emmanuelle Fourmentraux-Neves, Meriem Messaoudene, Sylvie Rusakiewicz, Laurence Zitvogel, Eric Vivier, Frédéric Vély, Florence Faure, Brigitte Dréno, Houssem Benlalam, Fanny Bouquet, Ariel Savina, Eric Pasmant, Antoine Toubert, Marie Françoise Avril, Anne Caignard

    Résultats de recherche: Contribution à un journalArticleRevue par des pairs

    18 Citations (Scopus)

    Résumé

    Over 60% of human melanoma tumors bear a mutation in the BRAF gene. The most frequent mutation is a substitution at codon 600 (V600E), leading to a constitutively active BRAF and overactivation of the MAPK pathway. Patients harboring mutated BRAF respond to kinase inhibitors such as vemurafenib. However, these responses are transient, and relapses are frequent.Melanoma cells are efficiently lysed by activated natural killer (NK) cells. Melanoma cells express several stress-induced ligands that are recognized by activating NK-cell receptors. We have investigated the effect of vemurafenib on the immunogenicity of seven BRAF mutated melanoma cells to NK cells and on their growth and sensitivity to NK-cell-mediated lysis. We showed that vemurafenib treatment modulated expression of ligands for two activating NK receptors, increasing expression of B7-H6, a ligand for NKp30, and decreasing expression of MICA and ULBP2, ligands for NKG2D. Vemurafenib also increased expression of HLA class I and HLA-E molecules, likely leading to higher engagement of inhibitory receptors (KIRs and NKG2A, respectively), and decreased lysis of vemurafenib-treated melanoma cell lines by cytokine-activated NK cells. Finally, we showed that whereas batimastat (a broad-spectrum matrix metalloprotease inhibitor) increased cell surface ULBP2 by reducing its shedding, vemurafenib lowered soluble ULBP2, indicating thatBRAFsignal inhibition diminished expression of both cell-surface and soluble forms of NKG2D ligands. Vemurafenib, inhibiting BRAF signaling, shifted the balance of activatory and inhibitory NK ligands on melanoma cells and displayed immunoregulatory effects on NK-cell functional activities. Cancer Immunol Res; 5(7); 582-93.

    langue originaleAnglais
    Pages (de - à)582-593
    Nombre de pages12
    journalCancer Immunology Research
    Volume5
    Numéro de publication7
    Les DOIs
    étatPublié - 1 juil. 2017

    Contient cette citation