TY - JOUR
T1 - Skin tumors induced by sorafenib; paradoxic RAS-RAF pathway activation and oncogenic mutations of HRAS, TP53, and TGFBR1
AU - Arnault, Jean Philippe
AU - Mateus, Christine
AU - Escudier, Bernard
AU - Tomasic, Gorana
AU - Wechsler, Janine
AU - Hollville, Emilie
AU - Soria, Jean Charles
AU - Malka, David
AU - Sarasin, Alain
AU - Larcher, Magalie
AU - Andrë, Jocelyne
AU - Kamsu-Kom, Nyam
AU - Boussemart, Lise
AU - Lacroix, Ludovic
AU - Spatz, Alain
AU - Eggermont, Alexander M.
AU - Druillennec, Sabine
AU - Vagner, Stephan
AU - Eychène, Alain
AU - Dumaz, Nicolas
AU - Robert, Caroline
PY - 2012/1/1
Y1 - 2012/1/1
N2 - Purpose: The emergence of skin tumors in patients treated with sorafenib or with more recent BRAF inhibitors is an intriguing and potentially serious event. We carried out a clinical, pathologic, and molecular study of skin lesions occurring in patients receiving sorafenib. Experimental Design: Thirty-one skin lesions from patients receiving sorafenib were characterized clinically and pathologically. DNA extracted from the lesions was screened for mutation hot spots of HRAS, NRAS, KiRAS, TP53, EGFR, BRAF, AKT1, PI3KCA, TGFBR1, and PTEN. Biological effect of sorafenib was studied in vivo in normal skin specimen and in vitro on cultured keratinocytes. Results: We observed a continuous spectrum of lesions: from benign to more inflammatory and proliferative lesions, all seemingly initiated in the hair follicles. Eight oncogenic HRAS, TGFBR1, and TP53 mutations were found in 2 benign lesions, 3 keratoacanthomas (KA) and 3 KA-like squamous cell carcinoma (SCC). Six of them correspond to the typical UV signature. Treatment with sorafenib led to an increased keratinocyte proliferation and a tendency toward increased mitogen-activated protein kinase (MAPK) pathway activation in normal skin. Sorafenib induced BRAF-CRAF dimerization in cultured keratinocytes and activated CRAF with a dosedependent effect on MAP-kinase pathway activation and on keratinocyte proliferation. Conclusion: Sorafenib induces keratinocyte proliferation in vivo and a time- and dose-dependent activation of the MAP kinase pathway in vitro. It is associated with a spectrum of lesions ranging from benign follicular cystic lesions to KA-like SCC. Additional and potentially preexisting somatic genetic events, like UV-induced mutations, might influence the evolution of benign lesions to more proliferative and malignant tumors.
AB - Purpose: The emergence of skin tumors in patients treated with sorafenib or with more recent BRAF inhibitors is an intriguing and potentially serious event. We carried out a clinical, pathologic, and molecular study of skin lesions occurring in patients receiving sorafenib. Experimental Design: Thirty-one skin lesions from patients receiving sorafenib were characterized clinically and pathologically. DNA extracted from the lesions was screened for mutation hot spots of HRAS, NRAS, KiRAS, TP53, EGFR, BRAF, AKT1, PI3KCA, TGFBR1, and PTEN. Biological effect of sorafenib was studied in vivo in normal skin specimen and in vitro on cultured keratinocytes. Results: We observed a continuous spectrum of lesions: from benign to more inflammatory and proliferative lesions, all seemingly initiated in the hair follicles. Eight oncogenic HRAS, TGFBR1, and TP53 mutations were found in 2 benign lesions, 3 keratoacanthomas (KA) and 3 KA-like squamous cell carcinoma (SCC). Six of them correspond to the typical UV signature. Treatment with sorafenib led to an increased keratinocyte proliferation and a tendency toward increased mitogen-activated protein kinase (MAPK) pathway activation in normal skin. Sorafenib induced BRAF-CRAF dimerization in cultured keratinocytes and activated CRAF with a dosedependent effect on MAP-kinase pathway activation and on keratinocyte proliferation. Conclusion: Sorafenib induces keratinocyte proliferation in vivo and a time- and dose-dependent activation of the MAP kinase pathway in vitro. It is associated with a spectrum of lesions ranging from benign follicular cystic lesions to KA-like SCC. Additional and potentially preexisting somatic genetic events, like UV-induced mutations, might influence the evolution of benign lesions to more proliferative and malignant tumors.
UR - http://www.scopus.com/inward/record.url?scp=84855435059&partnerID=8YFLogxK
U2 - 10.1158/1078-0432.CCR-11-1344
DO - 10.1158/1078-0432.CCR-11-1344
M3 - Article
C2 - 22096025
AN - SCOPUS:84855435059
SN - 1078-0432
VL - 18
SP - 263
EP - 272
JO - Clinical Cancer Research
JF - Clinical Cancer Research
IS - 1
ER -