Sopa: a technology-invariant pipeline for analyses of image-based spatial omics

Quentin Blampey, Kevin Mulder, Margaux Gardet, Stergios Christodoulidis, Charles Antoine Dutertre, Fabrice André, Florent Ginhoux, Paul Henry Cournède

    Résultats de recherche: Contribution à un journalArticleRevue par des pairs

    1 Citation (Scopus)

    Résumé

    Spatial omics data allow in-depth analysis of tissue architectures, opening new opportunities for biological discovery. In particular, imaging techniques offer single-cell resolutions, providing essential insights into cellular organizations and dynamics. Yet, the complexity of such data presents analytical challenges and demands substantial computing resources. Moreover, the proliferation of diverse spatial omics technologies, such as Xenium, MERSCOPE, CosMX in spatial-transcriptomics, and MACSima and PhenoCycler in multiplex imaging, hinders the generality of existing tools. We introduce Sopa (https://github.com/gustaveroussy/sopa), a technology-invariant, memory-efficient pipeline with a unified visualizer for all image-based spatial omics. Built upon the universal SpatialData framework, Sopa optimizes tasks like segmentation, transcript/channel aggregation, annotation, and geometric/spatial analysis. Its output includes user-friendly web reports and visualizer files, as well as comprehensive data files for in-depth analysis. Overall, Sopa represents a significant step toward unifying spatial data analysis, enabling a more comprehensive understanding of cellular interactions and tissue organization in biological systems.

    langue originaleAnglais
    Numéro d'article4981
    journalNature Communications
    Volume15
    Numéro de publication1
    Les DOIs
    étatPublié - 1 déc. 2024

    Contient cette citation