StructuRegNet: Structure-Guided Multimodal 2D-3D Registration

Amaury Leroy, Alexandre Cafaro, Grégoire Gessain, Anne Champagnac, Vincent Grégoire, Eric Deutsch, Vincent Lepetit, Nikos Paragios

    Résultats de recherche: Le chapitre dans un livre, un rapport, une anthologie ou une collection!!Conference contributionRevue par des pairs

    2 Citations (Scopus)

    Résumé

    Multimodal 2D-3D co-registration is a challenging problem with numerous clinical applications, including improved diagnosis, radiation therapy, or interventional radiology. In this paper, we present StructuRegNet, a deep-learning framework that addresses this problem with three novel contributions. First, we combine a 2D-3D deformable registration network with an adversarial modality translation module, allowing each block to benefit from the signal of the other. Second, we solve the initialization challenge for 2D-3D registration by leveraging tissue structure through cascaded rigid areas guidance and distance field regularization. Third, StructuRegNet handles out-of-plane deformation without requiring any 3D reconstruction thanks to a recursive plane selection. We evaluate the quantitative performance of StructuRegNet for head and neck cancer between 3D CT scans and 2D histopathological slides, enabling pixel-wise mapping of low-quality radiologic imaging to gold-standard tumor extent and bringing biological insights toward homogenized clinical guidelines. Additionally, our method can be used in radiation therapy by mapping 3D planning CT into the 2D MR frame of the treatment day for accurate positioning and dose delivery. Our framework demonstrates superior results to traditional methods for both applications. It is versatile to different locations or magnitudes of deformation and can serve as a backbone for any relevant clinical context.

    langue originaleAnglais
    titreMedical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
    rédacteurs en chefHayit Greenspan, Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, Russell Taylor
    EditeurSpringer Science and Business Media Deutschland GmbH
    Pages771-780
    Nombre de pages10
    ISBN (imprimé)9783031439988
    Les DOIs
    étatPublié - 1 janv. 2023
    Evénement26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023 - Vancouver, Canada
    Durée: 8 oct. 202312 oct. 2023

    Série de publications

    NomLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume14229 LNCS
    ISSN (imprimé)0302-9743
    ISSN (Electronique)1611-3349

    Une conférence

    Une conférence26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
    Pays/TerritoireCanada
    La villeVancouver
    période8/10/2312/10/23

    Contient cette citation