TY - JOUR
T1 - Sunitinib Treatment of VHL C162F Cells Slows Down Proliferation and Healing Ability via Downregulation of ZHX2 and Confers a Mesenchymal Phenotype
AU - Buart, Stéphanie
AU - Diop, M’boyba Khadija
AU - Damei, Isabelle
AU - Chouaib, Salem
N1 - Publisher Copyright:
© 2023 by the authors.
PY - 2024/1/1
Y1 - 2024/1/1
N2 - von Hippel-Lindau (VHL) disease, due to mutations of the tumor suppressor VHL gene, is a rare hereditary syndrome with a high risk of developing clear cell renal cell carcinoma (ccRCC). We asked whether the VHL-C162F mutation interferes with proliferation, migration, healing and forming colony ability by using wild-type VHL (WT VHL) and VHL-C162F reconstituted cells. We then analyzed the in vitro impact of the sunitinib treatment on VHL-C162F cells. We showed that VHL-C162F mutations have no impact on cell morphology, colony formation and migration ability but confer a significant higher healing ability than in WT VHL cells. RNA sequencing analysis revealed that VHL-C162F mutation upregulates genes involved in hypoxia and epithelial mesenchymal transition (EMT) pathways by comparison with VHL WT cells. We next showed a decrease in healing ability in VHL-C162F cells depleting on ZHX2, an oncogenic driver of ccRCC, highlighting the potential involvement of ZHX2 in aggressiveness of the VHL-C162F cells. Moreover, we found that sunitinib treatment inhibits ZHX2 expression and induces a reduced proliferation correlating with downregulation of P-ERK. Sunitinib treatment also conferred a more mesenchymal profile to VHL-C162F cells with significant downregulation of E-cadherin and upregulation of N-cadherin, Slug and AXL. Sunitinib therapy may therefore promote disease progression in VHL-C162F patients.
AB - von Hippel-Lindau (VHL) disease, due to mutations of the tumor suppressor VHL gene, is a rare hereditary syndrome with a high risk of developing clear cell renal cell carcinoma (ccRCC). We asked whether the VHL-C162F mutation interferes with proliferation, migration, healing and forming colony ability by using wild-type VHL (WT VHL) and VHL-C162F reconstituted cells. We then analyzed the in vitro impact of the sunitinib treatment on VHL-C162F cells. We showed that VHL-C162F mutations have no impact on cell morphology, colony formation and migration ability but confer a significant higher healing ability than in WT VHL cells. RNA sequencing analysis revealed that VHL-C162F mutation upregulates genes involved in hypoxia and epithelial mesenchymal transition (EMT) pathways by comparison with VHL WT cells. We next showed a decrease in healing ability in VHL-C162F cells depleting on ZHX2, an oncogenic driver of ccRCC, highlighting the potential involvement of ZHX2 in aggressiveness of the VHL-C162F cells. Moreover, we found that sunitinib treatment inhibits ZHX2 expression and induces a reduced proliferation correlating with downregulation of P-ERK. Sunitinib treatment also conferred a more mesenchymal profile to VHL-C162F cells with significant downregulation of E-cadherin and upregulation of N-cadherin, Slug and AXL. Sunitinib therapy may therefore promote disease progression in VHL-C162F patients.
KW - ccRCCs
KW - epithelial mesenchymal transition
KW - hypoxia-related genes
KW - sunitinib
KW - VHL-C162F mutation
KW - ZHX2
UR - http://www.scopus.com/inward/record.url?scp=85182196641&partnerID=8YFLogxK
U2 - 10.3390/cancers16010034
DO - 10.3390/cancers16010034
M3 - Article
AN - SCOPUS:85182196641
SN - 2072-6694
VL - 16
JO - Cancers
JF - Cancers
IS - 1
M1 - 34
ER -