TEL is a sequence-specific transcriptional repressor

Rodolphe G. Lopez, Clémence Carron, Cécile Oury, Paola Gardellin, Olivier Bernard, Jacques Ghysdael

Résultats de recherche: Contribution à un journalArticleRevue par des pairs

153 Citations (Scopus)

Résumé

TEL is a gene frequently involved in specific chromosomal translocations in human leukemia and sarcoma that encodes a member of the ETS family of transcriptional regulators. TEL is unusual among other ETS proteins by its ability to self-associate in vivo, a property that is essential to the oncogenic activation of TEL-derived fusion proteins. We show here that TEL is a sequence-specific transcriptional repressor of ETS-binding site-driven transcription of model and natural promoters. Deletion of the oligomerization domain of TEL or its substitution by the homologous region of monomeric ETS1 impaired the ability of TEL to repress. In contrast, substitution of the oligomerization domain of TEL by unrelated oligomerization domains resulted in an active repressor, showing that the ability of TEL to repress depends on its ability to self-associate. The study of the properties of TEL fusions to the heterologous DNA binding domain of Gal4 identified two autonomous repression domains in TEL, distinct from its oligomerization domain, that are essential to the ability of TEL to repress ETS-binding site-containing promoters. These results have implications for the normal function of TEL, its relation to other ETS proteins, and its role in leukemogenesis.

langue originaleAnglais
Pages (de - à)30132-30138
Nombre de pages7
journalJournal of Biological Chemistry
Volume274
Numéro de publication42
Les DOIs
étatPublié - 15 oct. 1999
Modification externeOui

Contient cette citation